Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs) - DTU Orbit (11/10/2019)

Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs)

In this discussion paper, the transition from long-chain poly- and perfluorinated alkyl substances (PFASs) to fluorinated alternatives is addressed. Long-chain PFASs include perfluoroalkyl carboxylic acids (PFCAs) with 7 or more perfluorinated carbons, perfluoroalkyl sulfonic acids (PFSAs) with 6 or more perfluorinated carbons, and their precursors. Because long-chain PFASs have been found to be persistent, bioaccumulative and toxic, they are being replaced by a wide range of fluorinated alternatives. We summarize key concerns about the potential impacts of fluorinated alternatives on human health and the environment in order to provide concise information for different stakeholders and the public. These concerns include, amongst others, the likelihood of fluorinated alternatives or their transformation products becoming ubiquitously present in the global environment; the need for more information on uses, properties and effects of fluorinated alternatives; the formation of persistent terminal transformation products including PFCAs and PFSAs; increasing environmental and human exposure and potential of adverse effects as a consequence of the high ultimate persistence and increasing usage of fluorinated alternatives; the high societal costs that would be caused if the uses, environmental fate, and adverse effects of fluorinated alternatives had to be investigated by publicly funded research; and the lack of consideration of non-persistent alternatives to long-chain PFASs.

General information
Publication status: Published
Organisations: National Food Institute, Division of Food Chemistry, Stockholm University, University of Amsterdam, Boston University, London School of Hygiene and Tropical Medicine, Swiss Federal Institute of Technology Zurich
Contributors: Scheringer, M., Trier, X., Cousins, I. T., de Voogt, P., Fletcher, T., Wang, Z., Webster, T. F.
Number of pages: 3
Pages: 337-339
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Chemosphere
Volume: 114
ISSN (Print): 0045-6535
Ratings:
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.76 SJR 1.59 SNIP 1.63
Web of Science (2014): Indexed yes
Web of Science (2014): Impact factor 3.34
Original language: English
Keywords: PFOA, PFOS, PBT chemicals, Fluorinated surfactants, Fluorinated polymers
Electronic versions:
1_s2.0_S004565351400678X_main.pdf
DOIs:
10.1016/j.chemosphere.2014.05.044
URLs:
Source: FindIt
Source ID: 268335407
Research output: Contribution to journal › Journal article – Annual report year: 2014 › Research › peer-review