Hebei loess section in the Anyemaqen Mountains, northeast Tibetan Plateau: a high-resolution luminescence chronology

E. Chongyi*, Reza Sohbati, Andrew Sean Murray, Jan-Pieter Buylaert, Xiangjun Liu, Long Yang, Jie Yuan, Wenting Yan

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

60 Downloads (Pure)

Abstract

The extensive aeolian deposits of the Tibetan Plateau (TP) represent important environmental archives, recordinginformation about the past interplay between the Asian monsoon and Westerlies and the link between dustaccumulation and Quaternary glaciations. In the northeast TP, mantles of sandy loess form a distinct belt lyingbetween 3500 and 4500 m a.s.l. on the east-facing slopes of the Anyemaqen Mountains. However, there is littlechronological information about the loess deposits in this region. This study provides a detailed chronology for loessformation in the region using luminescence dating. A total of 29 samples were collected from an 8-m-thickhomogeneous loess section at Hebei (HB) in order to date sand-sized (63–90 lm) quartz and K-feldspar fractionsusing optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL and pIRIR) signals,respectively. The resulting quartz and feldspar ages are in good agreement over the last 40 ka; beyond this (i.e. De>120 Gy),the quartz age is underestimated, and the pIRIR170feldspar ages are consideredmore reliable. The HB loesssection records continuous environmental information from c. 50 to c. 30 ka, i.e. throughout Marine Isotope Stage(MIS) 3. Mass accumulation rates (MARs) varied considerably over this period with increased dust accumulationaroundc. 38 ka and afterc. 32 ka; in between, andat the beginning of MIS 3 (50–40 ka), the dust accumulation ratewas~50% lower. Finally, the HB section also records a MIS 2 hiatus of c. 17 ka duration, probably resulting from deflation.This study implies that loess deposition on the TP is predominantly an interglacial/interstadial phenomenon and theTP may be deflating at the same time as the Chinese Loess Plateau is accumulating, at least during MIS 2.
Original languageEnglish
JournalBoreas
Volume47
Issue number4
Pages (from-to)1170-1183
ISSN0300-9483
DOIs
Publication statusPublished - 2018

Cite this

@article{2beab829db2c4905895a0b05492c3ed2,
title = "Hebei loess section in the Anyemaqen Mountains, northeast Tibetan Plateau: a high-resolution luminescence chronology",
abstract = "The extensive aeolian deposits of the Tibetan Plateau (TP) represent important environmental archives, recordinginformation about the past interplay between the Asian monsoon and Westerlies and the link between dustaccumulation and Quaternary glaciations. In the northeast TP, mantles of sandy loess form a distinct belt lyingbetween 3500 and 4500 m a.s.l. on the east-facing slopes of the Anyemaqen Mountains. However, there is littlechronological information about the loess deposits in this region. This study provides a detailed chronology for loessformation in the region using luminescence dating. A total of 29 samples were collected from an 8-m-thickhomogeneous loess section at Hebei (HB) in order to date sand-sized (63–90 lm) quartz and K-feldspar fractionsusing optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL and pIRIR) signals,respectively. The resulting quartz and feldspar ages are in good agreement over the last 40 ka; beyond this (i.e. De>120 Gy),the quartz age is underestimated, and the pIRIR170feldspar ages are consideredmore reliable. The HB loesssection records continuous environmental information from c. 50 to c. 30 ka, i.e. throughout Marine Isotope Stage(MIS) 3. Mass accumulation rates (MARs) varied considerably over this period with increased dust accumulationaroundc. 38 ka and afterc. 32 ka; in between, andat the beginning of MIS 3 (50–40 ka), the dust accumulation ratewas~50{\%} lower. Finally, the HB section also records a MIS 2 hiatus of c. 17 ka duration, probably resulting from deflation.This study implies that loess deposition on the TP is predominantly an interglacial/interstadial phenomenon and theTP may be deflating at the same time as the Chinese Loess Plateau is accumulating, at least during MIS 2.",
author = "E. Chongyi and Reza Sohbati and Murray, {Andrew Sean} and Jan-Pieter Buylaert and Xiangjun Liu and Long Yang and Jie Yuan and Wenting Yan",
year = "2018",
doi = "10.1111/bor.12321",
language = "English",
volume = "47",
pages = "1170--1183",
journal = "Boreas",
issn = "0300-9483",
publisher = "Wiley-Blackwell",
number = "4",

}

Hebei loess section in the Anyemaqen Mountains, northeast Tibetan Plateau: a high-resolution luminescence chronology. / Chongyi, E.; Sohbati, Reza; Murray, Andrew Sean; Buylaert, Jan-Pieter; Liu, Xiangjun; Yang, Long; Yuan, Jie; Yan, Wenting.

In: Boreas, Vol. 47, No. 4, 2018, p. 1170-1183.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Hebei loess section in the Anyemaqen Mountains, northeast Tibetan Plateau: a high-resolution luminescence chronology

AU - Chongyi, E.

AU - Sohbati, Reza

AU - Murray, Andrew Sean

AU - Buylaert, Jan-Pieter

AU - Liu, Xiangjun

AU - Yang, Long

AU - Yuan, Jie

AU - Yan, Wenting

PY - 2018

Y1 - 2018

N2 - The extensive aeolian deposits of the Tibetan Plateau (TP) represent important environmental archives, recordinginformation about the past interplay between the Asian monsoon and Westerlies and the link between dustaccumulation and Quaternary glaciations. In the northeast TP, mantles of sandy loess form a distinct belt lyingbetween 3500 and 4500 m a.s.l. on the east-facing slopes of the Anyemaqen Mountains. However, there is littlechronological information about the loess deposits in this region. This study provides a detailed chronology for loessformation in the region using luminescence dating. A total of 29 samples were collected from an 8-m-thickhomogeneous loess section at Hebei (HB) in order to date sand-sized (63–90 lm) quartz and K-feldspar fractionsusing optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL and pIRIR) signals,respectively. The resulting quartz and feldspar ages are in good agreement over the last 40 ka; beyond this (i.e. De>120 Gy),the quartz age is underestimated, and the pIRIR170feldspar ages are consideredmore reliable. The HB loesssection records continuous environmental information from c. 50 to c. 30 ka, i.e. throughout Marine Isotope Stage(MIS) 3. Mass accumulation rates (MARs) varied considerably over this period with increased dust accumulationaroundc. 38 ka and afterc. 32 ka; in between, andat the beginning of MIS 3 (50–40 ka), the dust accumulation ratewas~50% lower. Finally, the HB section also records a MIS 2 hiatus of c. 17 ka duration, probably resulting from deflation.This study implies that loess deposition on the TP is predominantly an interglacial/interstadial phenomenon and theTP may be deflating at the same time as the Chinese Loess Plateau is accumulating, at least during MIS 2.

AB - The extensive aeolian deposits of the Tibetan Plateau (TP) represent important environmental archives, recordinginformation about the past interplay between the Asian monsoon and Westerlies and the link between dustaccumulation and Quaternary glaciations. In the northeast TP, mantles of sandy loess form a distinct belt lyingbetween 3500 and 4500 m a.s.l. on the east-facing slopes of the Anyemaqen Mountains. However, there is littlechronological information about the loess deposits in this region. This study provides a detailed chronology for loessformation in the region using luminescence dating. A total of 29 samples were collected from an 8-m-thickhomogeneous loess section at Hebei (HB) in order to date sand-sized (63–90 lm) quartz and K-feldspar fractionsusing optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL and pIRIR) signals,respectively. The resulting quartz and feldspar ages are in good agreement over the last 40 ka; beyond this (i.e. De>120 Gy),the quartz age is underestimated, and the pIRIR170feldspar ages are consideredmore reliable. The HB loesssection records continuous environmental information from c. 50 to c. 30 ka, i.e. throughout Marine Isotope Stage(MIS) 3. Mass accumulation rates (MARs) varied considerably over this period with increased dust accumulationaroundc. 38 ka and afterc. 32 ka; in between, andat the beginning of MIS 3 (50–40 ka), the dust accumulation ratewas~50% lower. Finally, the HB section also records a MIS 2 hiatus of c. 17 ka duration, probably resulting from deflation.This study implies that loess deposition on the TP is predominantly an interglacial/interstadial phenomenon and theTP may be deflating at the same time as the Chinese Loess Plateau is accumulating, at least during MIS 2.

U2 - 10.1111/bor.12321

DO - 10.1111/bor.12321

M3 - Journal article

VL - 47

SP - 1170

EP - 1183

JO - Boreas

JF - Boreas

SN - 0300-9483

IS - 4

ER -