Heating system energy flexibility of low-energy residential buildings - DTU Orbit (07/10/2019)

Heating system energy flexibility of low-energy residential buildings

Energy flexibility is proposed as a cost-effective solution facilitating secure operation of the energy system while integrating large share of renewables. With strict building regulations in Denmark, newly built buildings are low-energy buildings. In order to identify the role of low-energy buildings in the energy system, we investigated the physical potential for flexibility and analysed the thermal storage capacity existing inherently in the structural mass. Two building types were studied: single-family house and apartment block. The aim is to quantify the energy that can be added to or curtailed from each building during a time period without compromising thermal comfort. Different scenarios (starting time and duration), building design characteristics and boundary conditions were studied. The findings showed that low-energy buildings are highly robust and can remain autonomous for several hours. Although for individual buildings the available energy for curtailment is limited, if many buildings are aggregated energy flexibility becomes significant. The potential for storage in the thermal mass is considerable. The analysis presented high dependence of flexibility potential on boundary conditions (ambient temperature, solar radiation, internal gains) and underlined the importance of envelope insulation. Heat losses govern the potential for flexibility, while the walls’ thermal mass has a secondary influence.

General information
Publication status: Published
Organisations: Department of Civil Engineering, Energy and Services, Materials and Durability
Corresponding author: Foteinaki, K.
Contributors: Foteinaki, K., Li, R., Heller, A., Rode, C.
Pages: 95-108
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Energy and Buildings
Volume: 180
ISSN (Print): 0378-7788
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 5.36 SJR 1.934 SNIP 1.826
Web of Science (2018): Impact factor 4.495
Web of Science (2018): Indexed yes
Keywords: Energy flexibility, Building thermal mass, Thermal energy storage, Low-energy building, Demand response
DOI:
10.1016/j.enbuild.2018.09.030
Source: FindIt
Source ID: 2439600878
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review