HAWC2 and BeamDyn: Comparison Between Beam Structural Models for Aero-Servo-Elastic Frameworks

This work presents a comparison of two beam codes for aero-servo-elastic frameworks: a new structural model for the aeroelastic code HAWC2 and a new nonlinear beam model, BeamDyn, for the aeroelastic modularization framework FAST v8. The main goal is to establish the suitability of the two approaches to model the structural behaviour of modern wind turbine blades in operation. Through a series of benchmarking structural cases of increasing complexity, the capability of the two codes to simulate highly nonlinear effects is investigated and analyzed. Results show that even though the geometrically exact beam theory can better model effects such as very large deflections, rotations, and structural couplings, an approach based on a multi-body formulation assembled through linear elements is capable of computing accurate solutions for typical nonlinear beam theory benchmarking cases.

General information
Publication status: Published
Organisations: Department of Wind Energy, Aeroelastic Design, National Renewable Energy Laboratory
Contributors: Pavese, C., Wang, Q., Kim, T., Jonkman, J. M., Sprague, M. A.
Number of pages: 9
Publication date: 2015

Host publication information
Title of host publication: Proceedings of the EWEA Annual Event and Exhibition 2015
Publisher: European Wind Energy Association (EWEA)
Electronic versions:
Paper

Bibliographical note
Paper for poster presentation
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2015 › Research › peer-review