Having older siblings is associated with gut microbiota development during early childhood - DTU Orbit (13/10/2019)

Evidence suggests that early life infections, presence of older siblings and furred pets in the household affect the risk of developing allergic diseases through altered microbial exposure. Recently, low gut microbial diversity during infancy has also been linked with later development of allergies. We investigated whether presence of older siblings, furred pets and early life infections affected gut microbial communities at 9 and 18 months of age and whether these differences were associated with the cumulative prevalence of atopic symptoms of eczema and asthmatic bronchitis at 3 years of age. Bacterial compositions and diversity indices were determined in fecal samples collected from 114 infants in the SKOT I cohort at age 9 and 18 months by 16S rRNA gene sequencing. These were compared to the presence of older siblings, furred pets and early life infections and the cumulative prevalence of diagnosed asthmatic bronchitis and self-reported eczema at 3 years of age. The number of older siblings correlated positively with bacterial diversity (p = 0.030), diversity of the phyla Firmicutes (p = 0.013) and Bacteroidetes (p = 0.004) and bacterial richness (p = 0.006) at 18 months. Further, having older siblings was associated with increased relative abundance of several bacterial taxa at both 9 and 18 months of age. Compared to the effect of having siblings, presence of household furred pets and early life infections had less pronounced effects on the gut microbiota. Gut microbiota characteristics were not significantly associated with cumulative occurrence of eczema and asthmatic bronchitis during the first 3 years of life. Presence of older siblings is associated with increased gut microbial diversity and richness during early childhood, which could contribute to the substantiation of the hygiene hypothesis. However, no associations were found between gut microbiota and atopic symptoms of eczema and asthmatic bronchitis during early childhood and thus further studies are required to elucidate whether sibling-associated gut microbial changes influence development of allergies later in childhood.

General information
Publication status: Published
Organisations: National Food Institute, Research Group for Gut Microbiology and Immunology, Odense University Hospital, University of Southern Denmark
Number of pages: 9
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: B M C Microbiology
Volume: 15
Issue number: 1
Article number: 154
ISSN (Print): 1471-2180
Ratings:
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.93 SJR 1.42 SNIP 1.007
Web of Science (2015): Impact factor 2.581
Web of Science (2015): Indexed yes
Original language: English
Electronic versions:
art_3A10.1186_2Fs12866_015_0477_6.pdf
DOIs: 10.1186/s12866-015-0477-6
Source: FindIt
Source ID: 2280061364
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review