Haussdorff and hellinger for colorimetric sensor array classification

Development of sensors and systems for detection of chemical compounds is an important challenge with applications in areas such as anti-terrorism, demining, and environmental monitoring. A newly developed colorimetric sensor array is able to detect explosives and volatile organic compounds; however, each sensor reading consists of hundreds of pixel values, and methods for combining these readings from multiple sensors must be developed to make a classification system. In this work we examine two distance based classification methods, K-Nearest Neighbor (KNN) and Gaussian process (GP) classification, which both rely on a suitable distance metric. We evaluate a range of different distance measures and propose a method for sensor fusion in the GP classifier. Our results indicate that the best choice of distance measure depends on the sensor and the chemical of interest.

General information
Publication status: Published
Organisations: Department of Informatics and Mathematical Modeling, Cognitive Systems, Department of Micro- and Nanotechnology, Surface Engineering
Number of pages: 6
Publication date: 2012

Host publication information
Title of host publication: 2012 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
Place of publication: 978-1-4673-1025-3
Publisher: IEEE
ISBN (Print): 978-1-4673-1024-6
Keywords: Hausdorff distance, Hellinger distance, Chemo–selective compounds, Feature extraction, K–nearest neighbor classification, Gaussian Process Classification
DOIs:
10.1109/MLSP.2012.6349724
Source: dtu
Source ID: n::oai:DTIC-ART:iel/373905555::21783
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2012 › Research › peer-review