Harvest time prediction for batch processes

Batch processes usually exhibit variation in the time at which individual batches are stopped (referred to as the harvest time). Harvest time is based on the occurrence of some criterion and there may be great uncertainty as to when this criterion will be satisfied. This uncertainty increases the difficulty of scheduling downstream operations and results in fewer completed batches per day. A real case study is presented of a bacteria fermentation process. We consider the problem of predicting the harvest time of a batch in advance to reduce variation and improving batch quality. Lasso regression is used to obtain an interpretable model for predicting the harvest time at an early stage in the batch. A novel method for updating the harvest time predictions as a batch progresses is presented, based on information obtained from online alignment using dynamic time warping.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Statistics and Data Analysis, Chr. Hansen AS
Contributors: Spooner, M. P., Kold, D., Kulahci, M.
Number of pages: 10
Pages: 32-41
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Computers and Chemical Engineering
Volume: 117
ISSN (Print): 0098-1354
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 3.98 SJR 0.932 SNIP 1.562
Web of Science (2018): Impact factor 3.334
Web of Science (2018): Indexed yes
Original language: English
Keywords: Batch process, Dynamic time warping, Lasso regression, Partial least squares, Prediction
DOIs: 10.1016/j.compchemeng.2018.05.019
Source: FindIt
Source-ID: 2434769442
Research output: Contribution to journal → Journal article – Annual report year: 2018 → Research → peer-review