TY - ABST
T1 - Harnessing snake venoms to make T. brucei forever go to sleep
AU - Martos Esteban, A.
AU - Carrington, Mark
AU - Laustsen, A. H.
PY - 2018
Y1 - 2018
N2 - Trypanosoma brucei is a parasitic protozoan species capable of infecting insects, whose bite transmits African sleeping sickness (trypanosomiasis) in humans. Current treatments are becoming ineffective due to the parasite’s ability to avoid the lytic immunogenic response of the host. The parasite achieves this avoidance by modifying the composition of its outer coat, which is mainly composed of Variable Surface Glycoprotein (VSG). Snake venoms are composed of toxic proteins and peptides, with or without enzymatic activity, and a range of other molecules that may influence physiological processes. Previously, it has been demonstrated that viper venoms are able to kill certain parasitic species, but elapid snake venoms have never been investigated. The venom of the elapid Naja nigricollis (black-necked spitting cobra) is mainly composed of cytotoxic three-finger toxins (cytotoxins) that interfere with and disrupt cellular membranes with high target specificity. Here, we investigated how T. brucei is affected when this parasite is subjected to whole venom of N. nigricollis.
AB - Trypanosoma brucei is a parasitic protozoan species capable of infecting insects, whose bite transmits African sleeping sickness (trypanosomiasis) in humans. Current treatments are becoming ineffective due to the parasite’s ability to avoid the lytic immunogenic response of the host. The parasite achieves this avoidance by modifying the composition of its outer coat, which is mainly composed of Variable Surface Glycoprotein (VSG). Snake venoms are composed of toxic proteins and peptides, with or without enzymatic activity, and a range of other molecules that may influence physiological processes. Previously, it has been demonstrated that viper venoms are able to kill certain parasitic species, but elapid snake venoms have never been investigated. The venom of the elapid Naja nigricollis (black-necked spitting cobra) is mainly composed of cytotoxic three-finger toxins (cytotoxins) that interfere with and disrupt cellular membranes with high target specificity. Here, we investigated how T. brucei is affected when this parasite is subjected to whole venom of N. nigricollis.
U2 - 10.1016/j.toxicon.2018.06.018
DO - 10.1016/j.toxicon.2018.06.018
M3 - Conference abstract in journal
SN - 0041-0101
VL - 150
SP - 320
EP - 321
JO - Toxicon
JF - Toxicon
ER -