H2 splitting on Pt, Ru and Rh nanoparticles supported on sputtered HOPG

Elisabetta Maria Fiordaliso, Shane Murphy, R.M. Nielsen, Søren Dahl, Ib Chorkendorff

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The equilibrium hydrogen exchange rate between adsorbed and gas phase hydrogen at 1bar is measured for Pt, Ru and Rh nanoparticles supported on a sputtered HOPG substrate. The particles are prepared by Electron Beam Physical Vapor Deposition and the diameter of the particles varies between 2 and 5nm. The rate of hydrogen exchange is measured in the temperature range 40–200°C at 1bar, by utilization of the H–D exchange reaction. We find that the rate of hydrogen exchange increases with the particle diameter for all the metals, and that the rate for Ru and Rh is higher than for Pt. In the case of Pt, the equilibrium dissociative sticking probability, S, is found to be nearly independent of particle diameter. For Ru and Rh, S is found to depend strongly on particle diameter, with the larger particles being more active. The apparent energy of desorption at equilibrium, Eapp, shows a dramatic increase with decreasing particle diameter for diameters below 5nm for Ru and Rh, whereas Eapp is only weakly dependent on particle diameter for Pt. We suggest that the strong variation in the apparent desorption energy with particle diameter for Ru and Rh is due to the formation of compressed hydrogen adlayers on the terraces of the larger particles. Experiments are also carried out in the presence of 10ppm CO. Pt is found to be very sensitive to CO poisoning and the H–D exchange rate drops below the detection limit when CO is added to the gas mixture. In the case of Ru and Rh nanoparticles, CO decreases the splitting rate significantly, also at 200°C. The variation of the sensitivity to CO poisoning with particle diameter for Ru and Rh is found to be weak.
Original languageEnglish
JournalSurface Science
Volume606
Issue number3-4
Pages (from-to)263-272
ISSN0039-6028
DOIs
Publication statusPublished - 2012

Keywords

  • Nanoparticle
  • Rhodium
  • Sticking probability
  • Platinum
  • Ruthenium
  • Desorption energy
  • Hydrogen
  • H–D exchange

Fingerprint

Dive into the research topics of 'H2 splitting on Pt, Ru and Rh nanoparticles supported on sputtered HOPG'. Together they form a unique fingerprint.

Cite this