TY - RPRT
T1 - Greenhouse gas emissions of seafood from Danish capture fisheries in the Skagerrak, Kattegat, and western Baltic
AU - Hornborg, Sara
AU - Bastardie, Francois
AU - Eigaard, Ole Ritzau
AU - Ziegler, Friederike
PY - 2022
Y1 - 2022
N2 - Interest in finding sustainable diets is increasing where more attention has been paid to the role of seafoods in recent years. Danish fisheries’ producer organisations are interested in better understanding the carbon footprint and nutritional content of different species caught in Danish fisheries and how they compare to other types of animal-source food. The aim of this report is to place a selection of seafood products from Danish capture fisheries in a sustainable nutrition context. This is done by quantifying their greenhouse gas emissions, inferred from fishing effort, as well as nutritional content and relate findings to previous estimates of other common animal-source foods (farmed salmon, chicken, pork and beef). Furthermore, attempts to identify important drivers and improvement potentials are made. It is found that in terms of nutritional value, fatty fish (herring and farmed salmon) have a higher combined nutrient density than other foods included. Overall, herring and plaice caught in Danish fisheries in the Skagerrak, Kattegat and western Baltic are animal-source foods with lower greenhouse gas emissions than pork, beef, chicken, and farmed salmon. The same results are found for cod compared to pork and beef. Variability within and between gears, fishing areas and over time is however found, indicating improvement potentials. In the Skagerrak and Kattegat, shifting from demersal trawling to Danish seine/other gear types would lower fisheries greenhouse gas emissions considerably, while this potential is smaller in the western Baltic Sea. This partly reflects different targeting patterns, where cod is the main target species in the western Baltic Sea, while it is more a by-catch in crustacean fisheries in the other fishing areas. When results are compared with other fisheries targeting the same species, Danish plaice fisheries are associated with considerably lower fuel use relative to other fisheries for plaice. Results for Danish herring and cod vary depending on fishery, with some fisheries being less efficient than found elsewhere. The outcome for Danish fisheries is in part reflecting the different gears used but could also indicate different stock status, in particular for cod, and different methodological approaches. More detailed analysis, with collection of actual fuel use data for these fisheries instead of using modelled data, would be of interest to allow for further understanding of drivers as well as validation of results.
AB - Interest in finding sustainable diets is increasing where more attention has been paid to the role of seafoods in recent years. Danish fisheries’ producer organisations are interested in better understanding the carbon footprint and nutritional content of different species caught in Danish fisheries and how they compare to other types of animal-source food. The aim of this report is to place a selection of seafood products from Danish capture fisheries in a sustainable nutrition context. This is done by quantifying their greenhouse gas emissions, inferred from fishing effort, as well as nutritional content and relate findings to previous estimates of other common animal-source foods (farmed salmon, chicken, pork and beef). Furthermore, attempts to identify important drivers and improvement potentials are made. It is found that in terms of nutritional value, fatty fish (herring and farmed salmon) have a higher combined nutrient density than other foods included. Overall, herring and plaice caught in Danish fisheries in the Skagerrak, Kattegat and western Baltic are animal-source foods with lower greenhouse gas emissions than pork, beef, chicken, and farmed salmon. The same results are found for cod compared to pork and beef. Variability within and between gears, fishing areas and over time is however found, indicating improvement potentials. In the Skagerrak and Kattegat, shifting from demersal trawling to Danish seine/other gear types would lower fisheries greenhouse gas emissions considerably, while this potential is smaller in the western Baltic Sea. This partly reflects different targeting patterns, where cod is the main target species in the western Baltic Sea, while it is more a by-catch in crustacean fisheries in the other fishing areas. When results are compared with other fisheries targeting the same species, Danish plaice fisheries are associated with considerably lower fuel use relative to other fisheries for plaice. Results for Danish herring and cod vary depending on fishery, with some fisheries being less efficient than found elsewhere. The outcome for Danish fisheries is in part reflecting the different gears used but could also indicate different stock status, in particular for cod, and different methodological approaches. More detailed analysis, with collection of actual fuel use data for these fisheries instead of using modelled data, would be of interest to allow for further understanding of drivers as well as validation of results.
KW - Seafood
KW - Greenhouse gas emissions
KW - Fisheries
KW - Cod
KW - Paice
KW - Herring
M3 - Report
T3 - RISE Report
BT - Greenhouse gas emissions of seafood from Danish capture fisheries in the Skagerrak, Kattegat, and western Baltic
PB - RISE Research Institutes of Sweden AB
CY - Göteborg, Sweden
ER -