Projects per year
Abstract
Rapid granular filters are the most commonly used filters in drinking water
treatment plants and are the focus of this PhD study. They are usually
constructed with sand, anthracite, activated carbon, garnet sand, and ilmenite and
have filtration rates ranging from 3 to 15 m/h. Filters are often the last barrier
against disinfection resistant protozoan pathogens and this has led to increased
regulation of the filtration process. To be able to produce high-quality filtrate in a
constant and reliable manner while meeting stricter drinking water guideline
values, it is important to be able to optimize the design and operation of filters.
However, the operation of the filtration process is considered to be easy and the
design and control of filters are still based on empirical values, rules of thumb,
simple guidelines, or past experience
To optimize the use of granular filters, it is necessary to be able to observe the
physical state of the filter. The aim of this PhD study is to contribute to the
understanding and optimization of the granular media filtration process. The
focus of the work is to develop methodologies and diagnostic tools to analyze the
physical state of rapid filters and improve their use and performance.
A review of diagnostic tools for rapid granular filters has uncovered both
conventional tools, state of the art tools and tools currently in the development or
conception stage. The use of the tools for investigating a filter is described.
Simple diagnostic tools can be used in a preliminary investigation to observe the
symptoms of filter failure. These observations can then motivate a preliminary
diagnosis and then appropriate diagnostic tools can be selected and a thorough
analysis conducted. From the information obtained, the preliminary diagnosis can
be revised and mitigation options prescribed. The diagnostic tools are then used
again to verify the efficiency of the solution applied. If the problem is not solved
the whole process starts again. These tools are of significant interest for the
development of the Water Safety Plans recommended by WHO to monitor filters
in a proactive manner. They can also be used to optimize the filtration process.
However, further research is necessary to relate the information obtained through
the tools to specific causes. New tools such as the total dissolved gas probe, salt
tracers and ammonium profiles are presented. Potential tools from the soil and
groundwater field such as the hand penetrometer, time domain reflectometry and
ground penetrating radar are suggested. The heterogeneity of rapid filters has not been previously studied at full scale.
Filter heterogeneity is not desirable because it makes it difficult to achieve
constant and reliable filter performance, and water quality compliance. A salt
tracer tool is developed to be used in full-scale filters to investigate the
heterogeneity of the filter bed. The tool allows the pore velocity to be estimated
in different locations of the filter bed during the duration of a filter run.
Similarly, despite the importance of nitrification in groundwater treatment, the
removal of ammonium and the determination of the kinetics of nitrification have
been insufficiently researched in full-scale filters. A tool is developed to describe
nitrification quantitatively on full-scale filters under real conditions with varying
inlet flow and concentrations.
Experiments conducted in full-scale filters demonstrate that rapid granular filters
cannot be considered homogeneous. The estimated pore velocities were shown to
be variable in both space and time. A model was used to demonstrate that filter
heterogeneity can result in higher filter outlet contaminant concentrations. An
experiment also showed that nitrification in full-scale filters is heterogeneous.
The ammonium profiles exhibited variation in time and in space, vertically and
laterally within the filter. The nitrification rate constants varied randomly in time
and it was not possible to determine a clear nitrification reaction order. The cause
of the observed nitrification heterogeneity was discussed. Clogging in the top
layer of the porous media in a pilot-scale filter was shown to be a possible
explanation for the unexpected zero-order nitrification rate. It was also observed
that nitrification in the studied full-scale filter was mass transfer limited because
the local first-order nitrification rate constants were linearly related to the local
pore velocity.
By introducing the use of diagnostic tools to Water Safety Plans, new monitoring
measures with specific critical limits can be established that can provide an early
warning of deteriorating filter performance. However, research on the use of
diagnostic tools has to be conducted to document and standardize each procedure,
and to relate the information provided by the tools to guideline values or design
criteria, and to specific filter failures. Moreover, further research is necessary to
develop promising tools such as the hand penetrometer, time domain
reflectometry and ground penetrating radar.
Original language | English |
---|
Place of Publication | Kgs. Lyngby, Denmark |
---|---|
Publisher | Technical University of Denmark |
Number of pages | 53 |
ISBN (Print) | 978-87-92654-39-7 |
ISBN (Electronic) | 978-87-92654-40-3 |
Publication status | Published - 2011 |
Fingerprint
Dive into the research topics of 'Granular filters for water treatment: heterogeneity and diagnostic tools'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Optimization of Filters for Water Treatment by Development of new Diagnostic Tools
Lopato, L. R. (PhD Student), Binning, P. J. (Supervisor), Albrechtsen, H.-J. (Examiner), Gimbel, R. (Examiner), Grützmacher, G. (Examiner) & Arvin, E. (Main Supervisor)
01/11/2007 → 24/08/2011
Project: PhD