TY - JOUR
T1 - Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy
AU - Wu, Kaiyu
AU - Li, Tao
AU - Schmidt, Michael Stenbæk
AU - Rindzevicius, Tomas
AU - Boisen, Anja
AU - Ndoni, Sokol
PY - 2018
Y1 - 2018
N2 - Robust, macroscopically uniform, and highly sensitive substrates for surface-enhanced Raman spectroscopy (SERS) are fabricated using wafer-scale block copolymer lithography. The substrate consists of gold nanoparticles that can slide and aggregate on dense and recyclable alumina/silicon nanohoodoos. Hot-spot engineering is conducted to maximize the SERS performance of the substrate. The substrate demonstrates remarkably large surface-averaged SERS enhancements, greater than 107 (>108 in hot spots), with unrivalled macroscopic signal uniformity as characterized by a coefficient of variation of only 6% across 4 cm. After SERS analyses, the nanohoodoos can be recycled by complete removal of gold via a one-step, simple, and robust wet etching process without compromising performance. After eight times of recycling, the substrate still exhibits identical SERS performance in comparison to a new substrate. The macroscopic uniformity combined with recyclability at conserved high performance is expected to contribute significantly on the overall competitivity of the substrates. These findings show that the gold nanoparticles sliding on recyclable nanohoodoo substrate is a very strong candidate for obtaining cost-effective, high-quality, and reliable SERS spectra, facilitating a wide and simple use of SERS for both laboratorial and commercial applications
AB - Robust, macroscopically uniform, and highly sensitive substrates for surface-enhanced Raman spectroscopy (SERS) are fabricated using wafer-scale block copolymer lithography. The substrate consists of gold nanoparticles that can slide and aggregate on dense and recyclable alumina/silicon nanohoodoos. Hot-spot engineering is conducted to maximize the SERS performance of the substrate. The substrate demonstrates remarkably large surface-averaged SERS enhancements, greater than 107 (>108 in hot spots), with unrivalled macroscopic signal uniformity as characterized by a coefficient of variation of only 6% across 4 cm. After SERS analyses, the nanohoodoos can be recycled by complete removal of gold via a one-step, simple, and robust wet etching process without compromising performance. After eight times of recycling, the substrate still exhibits identical SERS performance in comparison to a new substrate. The macroscopic uniformity combined with recyclability at conserved high performance is expected to contribute significantly on the overall competitivity of the substrates. These findings show that the gold nanoparticles sliding on recyclable nanohoodoo substrate is a very strong candidate for obtaining cost-effective, high-quality, and reliable SERS spectra, facilitating a wide and simple use of SERS for both laboratorial and commercial applications
U2 - 10.1002/adfm.201704818
DO - 10.1002/adfm.201704818
M3 - Journal article
SN - 1616-301X
VL - 28
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 2
M1 - 1704818
ER -