Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative

Zongjie Dai, Mingtao Huang, Yun Chen, Verena Siewers, Jens Nielsen*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

209 Downloads (Pure)

Abstract

Saccharomyces cerevisiae is a Crabtree-positive eukaryal model organism. It is believed that the Crabtree effect has evolved as a competition mechanism by allowing for rapid growth and production of ethanol at aerobic glucose excess conditions. This inherent property of yeast metabolism and the multiple mechanisms underlying it require a global rewiring of the entire metabolic network to abolish the Crabtree effect. Through rational engineering of pyruvate metabolism combined with adaptive laboratory evolution (ALE), we demonstrate that it is possible to obtain such a global rewiring and hereby turn S. cerevisiae into a Crabtree-negative yeast. Using integrated systems biology analysis, we identify that the global rewiring of cellular metabolism is accomplished through a mutation in the RNA polymerase II mediator complex, which is also observed in cancer cells expressing the Warburg effect.
Original languageEnglish
Article number3059
JournalNature Communications
Volume9
Number of pages8
ISSN2041-1723
DOIs
Publication statusPublished - 2018

Bibliographical note

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License

Fingerprint Dive into the research topics of 'Global rewiring of cellular metabolism renders <i>Saccharomyces cerevisiae</i> Crabtree negative'. Together they form a unique fingerprint.

Cite this