Surfaces of carrot nanofibre coatings were modified by a gliding arc in atmospheric pressure air. The treatment strengthened wetting of deionized water and glycerol, increased an oxygen content, C-O and C=O, and moderately roughened the surfaces. In the perspective of composite materials, these changes to the nanofibres can potentially improve their processability when they are to be impregnated with a polymeric matrix. However, longer exposure to the gliding arc reduced oxidation and roughness of the surface, and thus there exists an optimum condition to achieve good wetting to solvents.

General information

Publication status: Published
Organisations: Department of Wind Energy, Composites Mechanics and Materials Mechanics, Luleå University of Technology
Contributors: Kusano, Y., Berglund, L., Aitomäki, Y., Oksman, K., Madsen, B.
Number of pages: 9
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: I O P Conference Series: Materials Science and Engineering
Volume: 139
Article number: 012027
ISSN (Print): 1757-8991
Ratings:
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 0.39 SJR 0.197 SNIP 0.555
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
 MSE_139_1_012027.pdf
 DOIs:
 10.1088/1757-899X/139/1/012027

Bibliographical note

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

Source: FindIt
Source-ID: 2342653350
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review