Genotoxicity of three biofuel candidates compared to reference fuels - DTU Orbit
(22/08/2019)

Genotoxicity of three biofuel candidates compared to reference fuels

Global demand for alternative energy sources increases due to concerns regarding energy security and greenhouse gas emissions. However, little is known regarding the impacts of biofuels to the environment and human health even though the identification of such impacts is important to avoid biofuels leading to undesired effects. In this study mutagenicity and genotoxicity of the three biofuel candidates ethyl levulinate (EL), 2-methyltetrahydrofuran (2-MTHF) and 2-methylfuran (2-MF) were investigated in comparison to two petroleum-derived fuels and a biodiesel. None of the samples induced mutagenicity in the Ames fluctuation test. However, the Micronucleus assay revealed significant effects in Chinese hamster (Cricetulus griseus) V79 cells caused by the potential biofuels. 2-MF revealed the highest toxic potential with significant induction of micronuclei below 20.0 mg/L. EL and 2-MTHF induced micronuclei only at very high concentrations (>1000.0 mg/L). In regard to the genotoxic potential of 2-MF, its usage as biofuel should be critically discussed.

General information
Publication status: Published
Organisations: Environmental Fate & Effect of Chemicals, Department of Environmental Engineering, RWTH Aachen University
Corresponding author: Hollert, H.
Pages: 131-138
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY
Volume: 64
ISSN (Print): 1382-6689
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 3.2 SJR 0.771 SNIP 0.952
Web of Science (2018): Impact factor 3.061
Web of Science (2018): Indexed yes
Original language: English
Keywords: Ames fluctuation assay, Biofuels, Fossil fuels, Genotoxicity, Micronucleus assay, Mutagenicity
DOIs:
10.1016/j.etap.2018.10.003
Source: FindIt
Source-ID: 2440594984
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review