Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism

Renate Muller, Marc Morant, Hanne Østergaard Jarmer, Lena Nilsson, Tom Hamborg Nielsen

    Research output: Contribution to journalJournal articleResearchpeer-review


    Global gene expression was analyzed in Arabidopsis (Arabidopsis thaliana) by microarrays comprising 21,500 genes. Leaf segments derived from phosphorus (P)-starved and P-replenished plants were incubated with or without sucrose (Suc) to obtain tissues with contrasting combinations of P and carbohydrate levels. Transcript profiling revealed the influence of the two factors individually and the interactions between P- and sugar-dependent gene regulation. A large number of gene transcripts changed more than 2-fold: In response to P starvation, 171 genes were induced and 16 repressed, whereas Suc incubation resulted in 337 induced and 307 repressed genes. A number of new candidate genes involved in P acquisition were discovered. In addition, several putative transcription factors and signaling proteins of P sensing were disclosed. Several genes previously identified to be sugar responsive were also regulated by P starvation and known P-responsive genes were sugar inducible. Nearly 150 genes were synergistically or antagonistically regulated by the two factors. These genes exhibit more prominent or contrasting regulation in response to Suc and P in combination than expected from the effect of the two factors individually. The genes exhibiting interactions form three main clusters with different response patterns and functionality of genes. One cluster (cluster 1) most likely represents a regulatory program to support increased growth and development when both P and carbohydrates are ample. Another cluster (cluster 3) represents genes induced to alleviate P starvation and these are further induced by carbohydrate accumulation. Thus, interactions between P and Suc reveal two different signaling programs and novel interactions in gene regulation in response to environmental factors. cis-Regulatory elements were analyzed for each factor and for interaction clusters. PHR1 binding sites were more frequent in promoters of P-regulated genes as compared to the entire Arabidopsis genome, and E2F and PHR1 binding sites were more frequent in interaction clusters 1 and 3, respectively.
    Original languageEnglish
    JournalPlant Physiology
    Issue number1
    Pages (from-to)156-71
    Publication statusPublished - 2007


    Dive into the research topics of 'Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism'. Together they form a unique fingerprint.

    Cite this