Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date

Su-lin L. Leong, Henrik Lantz, Olga V. Pettersson, Jens Christian Frisvad, Ulf Thrane, Hermann J. Heipieper, Jan Dijksterhuis, Manfred Grabherr, Mats Pettersson, Christian Tellgren-Roth, Johan Schnürer

    Research output: Contribution to journalJournal articleResearchpeer-review

    635 Downloads (Pure)

    Abstract

    Xeromyces bisporus can grow on sugary substrates down to 0.61, an extremely low water activity. Its genome size is approximately 22 Mb. Gene clusters encoding for secondary metabolites were conspicuously absent; secondary metabolites were not detected experimentally. Thus, in its 'dry' but nutrient-rich environment, X. bisporus appears to have relinquished abilities for combative interactions. Elements to sense/signal osmotic stress, e.g. HogA pathway, were present in X. bisporus. However, transcriptomes at optimal (∼ 0.89) versus low aw (0.68) revealed differential expression of only a few stress-related genes; among these, certain (not all) steps for glycerol synthesis were upregulated. Xeromyces bisporus increased glycerol production during hypo- and hyper-osmotic stress, and much of its wet weight comprised water and rinsable solutes; leaked solutes may form a protective slime. Xeromyces bisporus and other food-borne moulds increased membrane fatty acid saturation as water activity decreased. Such modifications did not appear to be transcriptionally regulated in X. bisporus; however, genes modulating sterols, phospholipids and the cell wall were differentially expressed. Xeromyces bisporus was previously proposed to be a 'chaophile', preferring solutes that disorder biomolecular structures. Both X. bisporus and the closely related xerophile, Xerochrysium xerophilum, with low membrane unsaturation indices, could represent a phylogenetic cluster of 'chaophiles'.
    Original languageEnglish
    JournalEnvironmental Microbiology
    Volume17
    Issue number2
    Pages (from-to)496-513
    Number of pages18
    ISSN1462-2912
    DOIs
    Publication statusPublished - 2015

    Bibliographical note

    This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

    Fingerprint

    Dive into the research topics of 'Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date'. Together they form a unique fingerprint.

    Cite this