Generation of multiple VUV dispersive waves using a tapered gas-filled hollow-core anti-resonant fiber

Md Selim Habib, Christos Markos, Ole Bang, Morten Bache

    Research output: Chapter in Book/Report/Conference proceedingConference abstract in proceedingsResearchpeer-review

    Abstract

    Hollow-core anti-resonant (HC-AR) fibers are perhaps the best platform for ultrafast nonlinear optics based on light-gas interactions because they offer broadband guidance and low-loss guidance. The main advantage of using gases inside HC fibers is that both the dispersion and nonlinearity can be tuned by simply changing the pressure of the gas [1]. The emission of efficient dispersive wave (DW) in the deep-UV has been already observed in a uniform Ar-filled hollow-core fiber with tunability from 200 to 320 nm by changing the gas pressure and pulse energy [2]. In the quest of optimizing the nonlinear process to further blue-shift the generated DWs towards vacuum ultra-violet (VUV), here we numerically demonstrate for the first time (to the best of our knowledge) how the use of a tapered Ar-filled HC-AR fiber leads to multiple DWs in the extreme wavelength region from 143 to 280 nm.
    Original languageEnglish
    Title of host publication2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference
    Number of pages1
    PublisherIEEE
    Publication date2017
    Pages1-1
    ISBN (Print)9781509067367
    DOIs
    Publication statusPublished - 2017
    EventThe 2017 European Conference on Lasers and Electro-Optics - Munich, Germany
    Duration: 25 Jun 201729 Jun 2017
    http://www.cleoeurope.org/

    Conference

    ConferenceThe 2017 European Conference on Lasers and Electro-Optics
    Country/TerritoryGermany
    CityMunich
    Period25/06/201729/06/2017
    Internet address

    Keywords

    • Europe

    Fingerprint

    Dive into the research topics of 'Generation of multiple VUV dispersive waves using a tapered gas-filled hollow-core anti-resonant fiber'. Together they form a unique fingerprint.

    Cite this