Generalized Hamming weights of affine Cartesian codes - DTU Orbit (11/11/2019)

Generalized Hamming weights of affine Cartesian codes

Let F be any field and A_1, \ldots, A_m be finite subsets of F. We determine the maximum number of common zeroes a linearly independent family of r polynomials of degree at most d of $F[x_1, \ldots, x_m]$ can have in $A_1 \times \ldots \times A_m$. In the case when F is a finite field, our results resolve the problem of determining the generalized Hamming weights of affine Cartesian codes. This is a generalization of the work of Heijnen and Pellikaan where these were determined for the generalized Reed–Muller codes. Finally, we determine the duals of affine Cartesian codes and compute their generalized Hamming weights as well.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics
Corresponding author: Datta, M.
Contributors: Beelen, P., Datta, M.
Pages: 130-145
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Finite Fields and Their Applications
Volume: 51
ISSN (Print): 1071-5797
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 1.54, SJR 1.073, SNIP 1.55
Web of Science (2018): Impact factor 1.254
Web of Science (2018): Indexed yes
Original language: English
Keywords: Data Processing, Algebra, Numerical Methods, Affine Cartesian codes, Affine Hilbert functions, Generalized Hamming weights, Zero dimensional varieties, Finite element method, Cartesians, Finite fields, Finite subsets, Generalized Hamming weight, Hilbert functions, Linearly independents, Zero-dimensional, Codes (symbols)
Electronic versions:
1706.02114.pdf
DOIs:
10.1016/j.ffa.2018.01.006
Source: FindIt
Source ID: 2396137848
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review