TY - JOUR
T1 - Gamma camera imaging for studying intestinal absorption and whole-body distribution of selenomethionine
AU - Madsen, Jan L.
AU - Sjögreen-Gleisner, Katarina
AU - Elema, Dennis Ringkjøbing
AU - Søndergaard, Lasse R.
AU - Rasmussen, Palle
AU - Fuglsang, Stefan
AU - Ljungberg, Michael
AU - Damgaard, Morten
N1 - © The Authors 2013
PY - 2014
Y1 - 2014
N2 - Se metabolism in humans is not well characterised. Currently, the estimates of Se absorption, whole-body retention and excretion are being obtained from balance and tracer studies. In the present study, we used gamma camera imaging to evaluate the whole-body retention and distribution of radiolabelled selenomethionine (SeMet), the predominant form of Se present in foods. A total of eight healthy young men participated in the study. After consumption of a meal containing 4MBq [75Se]L-SeMet ([75Se]SeMet), whole-body gamma camera scanning was performed for 45 min every hour over a 6 h period, every second hour for the next 18 h and once on each of the subsequent 6 d. Blood, urine and faecal samples were collected to determine the plasma content of [75Se]SeMet as well as its excretion in urine and faeces. Imaging showed that 87•9 (SD 3•3)% of the administered activity of [75Se]SeMet was retained within the body after 7 d. In contrast, the measured excretion in urine and faeces for the 7 d period was 8•2 (SD 1•1)% of the activity. Time–activity curves were generated for the whole body, stomach, liver, abdomen (other than the stomach and the liver), brain and femoral muscles. Gamma camera imaging allows for the assessment of the postprandial absorption of SeMet. This technique may also permit concurrent studies of organ turnover of SeMet.
AB - Se metabolism in humans is not well characterised. Currently, the estimates of Se absorption, whole-body retention and excretion are being obtained from balance and tracer studies. In the present study, we used gamma camera imaging to evaluate the whole-body retention and distribution of radiolabelled selenomethionine (SeMet), the predominant form of Se present in foods. A total of eight healthy young men participated in the study. After consumption of a meal containing 4MBq [75Se]L-SeMet ([75Se]SeMet), whole-body gamma camera scanning was performed for 45 min every hour over a 6 h period, every second hour for the next 18 h and once on each of the subsequent 6 d. Blood, urine and faecal samples were collected to determine the plasma content of [75Se]SeMet as well as its excretion in urine and faeces. Imaging showed that 87•9 (SD 3•3)% of the administered activity of [75Se]SeMet was retained within the body after 7 d. In contrast, the measured excretion in urine and faeces for the 7 d period was 8•2 (SD 1•1)% of the activity. Time–activity curves were generated for the whole body, stomach, liver, abdomen (other than the stomach and the liver), brain and femoral muscles. Gamma camera imaging allows for the assessment of the postprandial absorption of SeMet. This technique may also permit concurrent studies of organ turnover of SeMet.
KW - Selenomethionine
KW - Absorption
KW - Whole-body distribution
KW - Gamma camera imaging
U2 - 10.1017/S0007114513002559
DO - 10.1017/S0007114513002559
M3 - Journal article
C2 - 23930999
SN - 0007-1145
VL - 111
SP - 547
EP - 553
JO - British Journal of Nutrition
JF - British Journal of Nutrition
IS - 3
ER -