TY - RPRT
T1 - Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells
T2 - 36 Month Periodic Activity Report
AU - Li, Qingfeng
AU - Jensen, Jens Oluf
PY - 2007
Y1 - 2007
N2 - The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack with these compatible subunits.
The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 150-200°C, with a single cell performance target of 0.7 A/cm² at a cell voltage around 0.6 V. The target durability is more than 5,000 hours. A hydrocarbon reformer and a catalytic burner are to be developed and integrated with the stack.
The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers will be first synthesized and optimized. Different routes to functionalize the polymers will be explored to increate proton conductivity.
AB - The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack with these compatible subunits.
The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 150-200°C, with a single cell performance target of 0.7 A/cm² at a cell voltage around 0.6 V. The target durability is more than 5,000 hours. A hydrocarbon reformer and a catalytic burner are to be developed and integrated with the stack.
The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers will be first synthesized and optimized. Different routes to functionalize the polymers will be explored to increate proton conductivity.
M3 - Report
BT - Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells
PB - Technical University of Denmark
ER -