TY - JOUR
T1 - Fundamental properties of smart hydrogels for tissue engineering applications
T2 - A review
AU - Khan, Muhammad Umar Aslam
AU - Stojanović, Goran M.
AU - Abdullah, Mohd Faizal Bin
AU - Dolatshahi-Pirouz, Alireza
AU - Marei, Hany E.
AU - Ashammakhi, Nureddin
AU - Hasan, Anwarul
N1 - Publisher Copyright:
© 2023
PY - 2024
Y1 - 2024
N2 - Tissue engineering is an advanced and potential biomedical approach to treat patients suffering from lost or failed an organ or tissue to repair and regenerate damaged tissues that increase life expectancy. The biopolymers have been used to fabricate smart hydrogels to repair damaged tissue as they imitate the extracellular matrix (ECM) with intricate structural and functional characteristics. These hydrogels offer desired and controllable qualities, such as tunable mechanical stiffness and strength, inherent adaptability and biocompatibility, swellability, and biodegradability, all crucial for tissue engineering. Smart hydrogels provide a superior cellular environment for tissue engineering, enabling the generation of cutting-edge synthetic tissues due to their special qualities, such as stimuli sensitivity and reactivity. Numerous review articles have presented the exceptional potential of hydrogels for various biomedical applications, including drug delivery, regenerative medicine, and tissue engineering. Still, it is essential to write a comprehensive review article on smart hydrogels that successfully addresses the essential challenging issues in tissue engineering. Hence, the recent development on smart hydrogel for state-of-the-art tissue engineering conferred progress, highlighting significant challenges and future perspectives. This review discusses recent advances in smart hydrogels fabricated from biological macromolecules and their use for advanced tissue engineering. It also provides critical insight, emphasizing future research directions and progress in tissue engineering.
AB - Tissue engineering is an advanced and potential biomedical approach to treat patients suffering from lost or failed an organ or tissue to repair and regenerate damaged tissues that increase life expectancy. The biopolymers have been used to fabricate smart hydrogels to repair damaged tissue as they imitate the extracellular matrix (ECM) with intricate structural and functional characteristics. These hydrogels offer desired and controllable qualities, such as tunable mechanical stiffness and strength, inherent adaptability and biocompatibility, swellability, and biodegradability, all crucial for tissue engineering. Smart hydrogels provide a superior cellular environment for tissue engineering, enabling the generation of cutting-edge synthetic tissues due to their special qualities, such as stimuli sensitivity and reactivity. Numerous review articles have presented the exceptional potential of hydrogels for various biomedical applications, including drug delivery, regenerative medicine, and tissue engineering. Still, it is essential to write a comprehensive review article on smart hydrogels that successfully addresses the essential challenging issues in tissue engineering. Hence, the recent development on smart hydrogel for state-of-the-art tissue engineering conferred progress, highlighting significant challenges and future perspectives. This review discusses recent advances in smart hydrogels fabricated from biological macromolecules and their use for advanced tissue engineering. It also provides critical insight, emphasizing future research directions and progress in tissue engineering.
KW - Biopolymers
KW - Fundamental properties
KW - Smart hydrogels
KW - Tissue engineering
U2 - 10.1016/j.ijbiomac.2023.127882
DO - 10.1016/j.ijbiomac.2023.127882
M3 - Review
C2 - 37951446
AN - SCOPUS:85176507074
SN - 0141-8130
VL - 254
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 127882
ER -