Fundamental aeroelastic properties of a bend–twist coupled blade section

The effects of bend–twist coupling on the aeroelastic modal properties and stability limits of a two-dimensional blade section in attached flow are investigated. Bend–twist coupling is introduced in the stiffness matrix of the structural blade section model. The structural model is coupled with an unsteady aerodynamic model in a linearised state–space formulation. A numerical study is performed using structural and aerodynamic parameters representative for wind turbine blades. It is shown that damping of the edgewise mode is primarily influenced by the work of the lift which is close to antiphase, making the stability of the mode sensitive to changes in the stiffness matrix. The aerodynamic forces increase the stiffness of the flapwise mode for flap–twist coupling to feather for downwind deflections. The stiffness reduces and damping increases for flap–twist to stall. Edge–twist coupling is prone to an edgetwist flutter instability at much lower inflow speeds than the uncoupled blade section. Flap–twist coupling results in a moderate reduction of the flutter speed for twist to feather and divergence for twist to stall.

General information
Publication status: Published
Organisations: Department of Wind Energy, Wind turbine loads & control
Contributors: Stäblein, A. R., Hansen, M. H., Pirrung, G.
Number of pages: 18
Pages: 72-89
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Fluids and Structures
Volume: 68
ISSN (Print): 0889-9746
Ratings:
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 3.04 SJR 1.481 SNIP 2.119
 Web of Science (2017): Indexed yes
Original language: English
Keywords: Aeroelastic response, Aeroelastic stability, Aerofoil section, Bend-twist coupling
Electronic versions:
 Fundamental aeroelastic properties
DOIs:
 10.1016/j.jfluidstructs.2016.10.010

Bibliographical note
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Source: FindIt
Source-ID: 2347967525
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review