Fully consistent CFD methods for incompressible flow computations

Research output: Contribution to journalConference articleResearchpeer-review

439 Downloads (Pure)


Nowadays collocated grid based CFD methods are one of the most e_cient tools for computations of the ows past wind turbines. To ensure the robustness of the methods they require special attention to the well-known problem of pressure-velocity coupling. Many commercial codes to ensure the pressure-velocity coupling on collocated grids use the so-called momentum interpolation method of Rhie and Chow [1]. As known, the method and some of its widely spread modi_cations result in solutions, which are dependent of time step at convergence. In this paper the magnitude of the dependence is shown to contribute about 0.5% into the total error in a typical turbulent ow computation. Nevertheless if coarse grids are used, the standard interpolation methods result in much higher non-consistent behavior. To overcome the problem, a recently developed interpolation method, which is independent of time step, is used. It is shown that in comparison to other time step independent method, the method may enhance the convergence rate of the SIMPLEC algorithm up to 25 %. The method is veri_ed using turbulent ow computations around a NACA 64618 airfoil and the roll-up of a shear layer, which may appear in wind turbine wake.
Original languageEnglish
Article number012128
Book seriesJournal of Physics: Conference Series (Online)
Number of pages8
Publication statusPublished - 2014
Event5th International Conference on The Science of Making Torque from Wind 2014 - Technical University of Denmark, Copenhagen, Denmark
Duration: 10 Jun 201420 Jun 2014
Conference number: 5


Conference5th International Conference on The Science of Making Torque from Wind 2014
LocationTechnical University of Denmark
Internet address

Bibliographical note

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

Cite this