TY - JOUR
T1 - Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites
AU - Soussana, J.E.
AU - Allard, V.
AU - Pilegaard, Kim
AU - Ambus, Per
AU - Ammann, C.
AU - Campbell, C.L.
AU - Ceschia, E.
AU - Clifton-Brown, J.
AU - Czobel, S. Domingues
AU - Flechard, C.
AU - Fuhrer, J.
AU - Hensen, A.
AU - Horvath, L.
AU - Jones, M.B.
AU - Kasper, G.
AU - Martin, C.
AU - Nagy, Z.
AU - Neftel, A.
AU - Raschi, A.
AU - Baronti, S.
AU - Rees, R.M.
AU - Skiba, U.
AU - Stefani, P.
AU - Manca, G.
AU - Sutton, M.
AU - Tuba, Z.
AU - Valentini, R.
PY - 2007
Y1 - 2007
N2 - The full greenhouse gas balance of nine contrasted grassland sites covering a major climatic gradient over Europe was measured during two complete years. The sites include a wide range of management regimes (rotational grazing, continuous grazing and mowing), the three main types of managed grasslands across Europe (sown, intensive permanent and semi-natural grassland) and contrasted nitrogen fertilizer supplies. At all sites, the net ecosystem exchange (NEE) of CO2 was assessed using the eddy covariance technique. N2O emissions were monitored using various techniques (GC-cuvette systems, automated chambers and tunable diode laser) and CH4 emissions resulting from enteric fermentation of the grazing cattle were measured in situ at four sites using the SF6 tracer method. Averaged over the two measurement years, net ecosystem exchange (NEE) results show that the nine grassland plots displayed a net sink for atmospheric CO2 of -240 +/- 70 g C m(-2) year(-1) (mean confidence interval at p > 0.95). Because of organic C exports (from cut and removed herbage) being usually greater than C imports (from manure spreading), the average C storage (net biome productivity, NBP) in the grassland plots was estimated at -104 +/- 73 g cm(-2) year(-1) that is 43% of the atmospheric CO2 sink. On average of the 2 years, the grassland plots displayed annual N2O and CH4 (from enteric fermentation by grazing cattle) emissions, in CO2-C equivalents, of 14 +/- 4.7 and 32 +/- 6.8 g CO2-C equiv. m(-2) year(-1), respectively. Hence, when expressed in CO2-C equivalents, emissions of N2O and CH4 resulted in a 19% offset of the NEE sink activity. An attributed GHG balance has been calculated by subtracting from the NBP: (i) N2O and CH4 emissions occurring within the grassland plot and (ii) off-site emissions of CO2 and CH4 as a result of the digestion and enteric fermentation by cattle of the cut herbage. On average of the nine sites, the attributed GHG balance was not significantly different from zero (-85 +/- 77 g CO2-C equiv. m(-2) year(-1)).
AB - The full greenhouse gas balance of nine contrasted grassland sites covering a major climatic gradient over Europe was measured during two complete years. The sites include a wide range of management regimes (rotational grazing, continuous grazing and mowing), the three main types of managed grasslands across Europe (sown, intensive permanent and semi-natural grassland) and contrasted nitrogen fertilizer supplies. At all sites, the net ecosystem exchange (NEE) of CO2 was assessed using the eddy covariance technique. N2O emissions were monitored using various techniques (GC-cuvette systems, automated chambers and tunable diode laser) and CH4 emissions resulting from enteric fermentation of the grazing cattle were measured in situ at four sites using the SF6 tracer method. Averaged over the two measurement years, net ecosystem exchange (NEE) results show that the nine grassland plots displayed a net sink for atmospheric CO2 of -240 +/- 70 g C m(-2) year(-1) (mean confidence interval at p > 0.95). Because of organic C exports (from cut and removed herbage) being usually greater than C imports (from manure spreading), the average C storage (net biome productivity, NBP) in the grassland plots was estimated at -104 +/- 73 g cm(-2) year(-1) that is 43% of the atmospheric CO2 sink. On average of the 2 years, the grassland plots displayed annual N2O and CH4 (from enteric fermentation by grazing cattle) emissions, in CO2-C equivalents, of 14 +/- 4.7 and 32 +/- 6.8 g CO2-C equiv. m(-2) year(-1), respectively. Hence, when expressed in CO2-C equivalents, emissions of N2O and CH4 resulted in a 19% offset of the NEE sink activity. An attributed GHG balance has been calculated by subtracting from the NBP: (i) N2O and CH4 emissions occurring within the grassland plot and (ii) off-site emissions of CO2 and CH4 as a result of the digestion and enteric fermentation by cattle of the cut herbage. On average of the nine sites, the attributed GHG balance was not significantly different from zero (-85 +/- 77 g CO2-C equiv. m(-2) year(-1)).
KW - Samfund og systemer
U2 - 10.1016/j.agee.2006.12.022
DO - 10.1016/j.agee.2006.12.022
M3 - Journal article
SN - 0167-8809
VL - 121
SP - 121
EP - 134
JO - Agriculture, Ecosystems & Environment
JF - Agriculture, Ecosystems & Environment
IS - 1-2
ER -