Frost resistance of concrete with high contents of fly ash - A study on how hollow fly ash particles distort the air void analysis

Marianne Tange Hasholt*, Katja Udbye Christensen, Claus Pade

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    377 Downloads (Pure)

    Abstract

    Cenospheres are hollow fly ash particles. When performing air void analysis on a contrast enhanced plane section, air inclusions in cenospheres are counted as air voids. In the present study, air void analyses for air entrained concrete mixtures with fly ash (up to 50% of binder mass) were corrected based on chord counting for non-air entrained paste samples with various contents of fly ash. The correction only lead to a small reduction of the total air content, but it increased the spacing factor up to 25%. The concrete mixtures were also exposed to salt frost scaling testing. The amounts of scaling were unacceptable for several mixtures with high dosages of fly ash. Inferior strength or inadequate air void structure could not explain this. Additional testing pointed to that chemical surface degradation aggravated the physical frost attack for concrete mixtures with high contents of fly ash.
    Original languageEnglish
    JournalCement and Concrete Research
    Volume119
    Pages (from-to)102-112
    ISSN0008-8846
    DOIs
    Publication statusPublished - 2019

    Fingerprint

    Dive into the research topics of 'Frost resistance of concrete with high contents of fly ash - A study on how hollow fly ash particles distort the air void analysis'. Together they form a unique fingerprint.

    Cite this