From an antiferromagnetic insulator to a strongly correlated metal in square-lattice MCl2(pyrazine)2 coordination solids

Panagiota Perlepe, Itziar Oyarzabal, Laura Voigt, Mariusz Kubus, Daniel N. Woodruff, Sebastian E. Reyes-Lillo, Michael L. Aubrey, Philippe Négrier, Mathieu Rouzières, Fabrice Wilhelm, Andrei Rogalev, Jeffrey B. Neaton, Jeffrey R. Long, Corine Mathonière, Baptiste Vignolle*, Kasper S. Pedersen*, Rodolphe Clérac*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

91 Downloads (Pure)

Abstract

Electronic synergy between metal ions and organic linkers is a key to engineering molecule-based materials with a high electrical conductivity and, ultimately, metallicity. To enhance conductivity in metal-organic solids, chemists aim to bring the electrochemical potentials of the constituent metal ions and bridging organic ligands closer in a quest to obtain metal-d and ligand-π admixed frontier bands. Herein, we demonstrate the critical role of the metal ion in tuning the electronic ground state of such materials. While VCl2(pyrazine)2 is an electrical insulator, TiCl2(pyrazine)2 displays the highest room-temperature electronic conductivity (5.3 S cm-1) for any metal-organic solid involving octahedrally coordinated metal ions. Notably, TiCl2(pyrazine)2 exhibits Pauli paramagnetism consistent with the specific heat, supporting the existence of a Fermi liquid state (i.e., a correlated metal). This result widens perspectives for designing molecule-based systems with strong metal-ligand covalency and electronic correlations.
Original languageEnglish
Article number5766
JournalNature Communications
Volume13
Issue number1
Number of pages7
ISSN2041-1723
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'From an antiferromagnetic insulator to a strongly correlated metal in square-lattice MCl2(pyrazine)2 coordination solids'. Together they form a unique fingerprint.

Cite this