Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution

Thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and thermodynamic modelling have been used to obtain Friedel's salt profiles for saturated mortar cylinders exposed to a 2.8 M NaCl solution. Comparison of the measured Friedel's salt profiles with the total chloride profiles indicates that only a minor part of the chloride ions is bound in Friedel's in the studied Portland cement (P) and limestone blended (L) cement. The chloride binding capacity with respect to the formation of Friedel's salt by consumption of monocarbonate is reached for the P and L mortars, where only a fraction of about 20% of the amount of C₃A is found to contribute to formation of Friedel's salt. Higher amounts of Friedel's salt are formed in the metakaolin containing mortars. However, the limited chloride ingress depths prevent quantification of the potential full chloride binding capacity of Friedel's salt in these mortars. The measured amounts of Friedel's salt by TGA and the portlandite profiles show that the maximum amount of Friedel's salt is found in the region with limited leaching of calcium, which is in good agreement with the predicted Friedel's salt profiles.

General information
Publication status: Published
Organisations: Norwegian University of Science and Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Cementir Holding S.p.A., Aarhus University
Corresponding author: Skibsted, J.
Number of pages: 11
Pages: 73-83
Publication date: 1 Apr 2017
Peer-reviewed: Yes

Publication information
Journal: Cement and Concrete Composites
Volume: 78
ISSN (Print): 0958-9465
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.66 SJR 3.146 SNIP 2.925
Web of Science (2017): Impact factor 4.66
Web of Science (2017): Indexed yes
Original language: English
Keywords: Chloride binding, Friedel's salt profiles, Portland cement-based mortars, Thermodynamic modelling, Thermogravimetric analysis, Total chloride profiles
DOIs:
10.1016/j.cemconcomp.2017.01.002
Source: Scopus
Source ID: 85009445511
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review