Friction-resilient position control for machine tools—Adaptive and sliding-mode methods compared

Robust trajectory tracking and increasing demand for high-accuracy tool positioning have motivated research in advanced control design for machine tools. State-of-the-art industry solutions employ cascades of Proportional (P) and Proportional-Integral (PI) controllers for closed-loop servo control of position and velocity of the machine axes. Although these schemes provide the required positioning accuracy in nominal conditions, performance deteriorates with increased friction and wear of the machine. With conventional control, re-tuning is necessary during the lifetime if specified accuracy shall be maintained. This paper investigates whether nonlinear and adaptive controllers can cope with typical levels of friction increase without loss of performance. It evaluates the performance of a state-of-art industry solution with that obtainable with adaptive and sliding mode positioning controls. The main finding is that an adaptive backstepping control is resilient to unknown and increasing friction at realistic levels of wear, where the P-PI control fall short with respect to accuracy. A single-axis test rig with adjustable friction is used to assess the performance of different controllers.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Automation and Control, Siemens
Contributors: Papageorgiou, D., Blanke, M., Niemann, H. H., Richter, J. H.
Pages: 69–85
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Control Engineering Practice
Volume: 75
ISSN (Print): 0967-0661
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 3.98 SJR 0.998 SNIP 1.872
Web of Science (2018): Indexed yes
Original language: English
Keywords: Machine tools, Mechanical drive-train, Robustness to friction, Nonlinear adaptive control, Sliding-mode control, Controller comparison, High-accuracy positioning
DOIs: 10.1016/j.conengprac.2018.03.017
Source: PublicationPreSubmission
Source-ID: 146296566
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review