TY - JOUR
T1 - Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions
AU - Schunk, G.
AU - Vogl, U.
AU - Sedlmeir, F.
AU - Strekalov, D. V.
AU - Otterpohl, A.
AU - Averchenko, V.
AU - Schwefel, H. G L
AU - Leuchs, G.
AU - Marquardt, Christoph
PY - 2016
Y1 - 2016
N2 - Quantum repeaters rely on interfacing flying qubits with quantum memories. The most common implementations include a narrowband single photon matched in bandwidth and central frequency to an atomic system. Previously, we demonstrated the compatibility of our versatile source of heralded single photons, which is based on parametric down-conversion in a triply resonant whispering-gallery mode resonator, with alkaline transitions [Schunk et al., Optica 2015, 2, 773]. In this paper, we analyse our source in terms of phase matching, available wavelength-tuning mechanisms and applications to narrowband atomic systems. We resonantly address the D1 transitions of caesium and rubidium with this optical parametric oscillator pumped above its oscillation threshold. Below threshold, the efficient coupling of single photons to atomic transitions heralded by single telecom-band photons is demonstrated. Finally, we present an accurate analytical description of our observations. Providing the demonstrated flexibility in connecting various atomic transitions with telecom wavelengths, we show a promising approach to realize an essential building block for quantum repeaters.
AB - Quantum repeaters rely on interfacing flying qubits with quantum memories. The most common implementations include a narrowband single photon matched in bandwidth and central frequency to an atomic system. Previously, we demonstrated the compatibility of our versatile source of heralded single photons, which is based on parametric down-conversion in a triply resonant whispering-gallery mode resonator, with alkaline transitions [Schunk et al., Optica 2015, 2, 773]. In this paper, we analyse our source in terms of phase matching, available wavelength-tuning mechanisms and applications to narrowband atomic systems. We resonantly address the D1 transitions of caesium and rubidium with this optical parametric oscillator pumped above its oscillation threshold. Below threshold, the efficient coupling of single photons to atomic transitions heralded by single telecom-band photons is demonstrated. Finally, we present an accurate analytical description of our observations. Providing the demonstrated flexibility in connecting various atomic transitions with telecom wavelengths, we show a promising approach to realize an essential building block for quantum repeaters.
U2 - 10.1080/09500340.2016.1148211
DO - 10.1080/09500340.2016.1148211
M3 - Journal article
SN - 0950-0340
VL - 63
SP - 2058
EP - 2073
JO - Journal of Modern Optics
JF - Journal of Modern Optics
IS - 20
ER -