Forced Sequence Sequential Decoding - DTU Orbit (04/10/2019)

Forced Sequence Sequential Decoding: A concatenated coding system with iterated sequential inner decoding

We describe a new concatenated decoding scheme based on iterations between an inner sequentially decoded convolutional code of rate $R=1/4$ and memory $M=23$, and block interleaved outer Reed-Solomon (RS) codes with nonuniform profile. With this scheme decoding with good performance is possible as low as $Eb/N0=0.6$ dB, which is about 1.25 dB below the signal-to-noise ratio (SNR) that marks the cutoff rate for the full system. Accounting for about 0.45 dB due to the outer codes, sequential decoding takes place at about 1.7 dB below the SNR cutoff rate for the convolutional code. This is possible since the iteration process provides the sequential decoders with side information that allows a smaller average load and minimizes the probability of computational overflow. Analytical results for the probability that the first RS word is decoded after C computations are presented. These results are supported by simulation results that are also extended to other parameters.

General information
Publication status: Published
Organisations: Department of Information Technology, Department of Photonics Engineering
Contributors: Jensen, O. R., Paaske, E.
Pages: 1280-1291
Publication date: 1998
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Communications
Volume: 46
Issue number: 10
ISSN (Print): 0090-6778
Original language: English
Electronic versions:
Jensen.pdf
DOIs:
10.1109/26.725306

Bibliographical note
Copyright: 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE
Source: orbit
Source ID: 165391
Research output: Contribution to journal › Journal article – Annual report year: 1998 › Research › peer-review