Foam suppression in overloaded manure-based biogas reactors using antifoaming agents - DTU Orbit (12/10/2019)

Foam suppression in overloaded manure-based biogas reactors using antifoaming agents

Foam control is an imperative need in biogas plants, as foaming is a major operational problem. In the present study, the effect of oils (rapeseed oil, oleic acid, and octanoic acid) and tributylphosphate on foam reduction and process performance in batch and continuous manure-based biogas reactors was investigated. The compounds were tested in dosages of 0.05%, 0.1% and 0.5% v/v feed. The results showed that rapeseed oil was most efficient to suppress foam at the dosage of 0.05% and 0.1% v/v feed, while octanoic acid was most efficient to suppress foam at dosage of 0.5% v/v feed. Moreover, the addition of rapeseed oil also increased methane yield. In contrast, tributylphosphate, which was very efficient antifoam, was found to be inhibitory to the biogas process. © 2013 Elsevier Ltd.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Residual Resource Engineering
Contributors: Kougias, P., Boe, K., Tsapekos, P., Angelidaki, I.
Pages: 198-205
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Bioresource Technology
Volume: 153
Issue number: 4
ISSN (Print): 0960-8524
Ratings:
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.3 SJR 2.399 SNIP 2.082
Web of Science (2014): Indexed yes
Original language: English
Keywords: Anaerobic digestion, Batch reactors, Foam control, Manures, Methane, Runway foaming, Saturated fatty acids, Vegetable oils, Biogas
DOIs:
10.1016/j.biortech.2013.11.083
Source: dtu
Source ID: n:oai:DTIC-ART:compendex/429513069::36873
Research output: Contribution to journal → Journal article – Annual report year: 2014 → Research → peer-review