Flow visualization and simulation of the filling process during injection molding - DTU Orbit
(17/11/2019)

Flow visualization and simulation of the filling process during injection molding
To directly compare experimental moldings from an injection molding machine with simulations, a special mold has been produced with a glass window. The injection plane is perpendicular to the opening and closing planes, in order for the 55 mm thick glass window to be easily visible from the side. A high speed camera recording 500 frames per second was employed, and the mold had three thermocouples and two pressure sensors installed. The molded part is a 2 mm thick plate with a 0.5 mm thin section, which creates a characteristic V-shaped flow pattern. Two different materials were employed, namely ABS and a high viscosity PC. Simulations were performed using the actual machine data as input, including the injection screw acceleration. Furthermore, the nozzle and barrel geometries were included as a hot runner to capture the effect of compressibility of the material in front of the screw. These two had significant effects on the filling times and injection pressure calculated by the simulations. Other effects investigated included transient thermal management of the mold, pressure dependent viscosity and wall slip, but their effect were not remarkably large in this work. The obtained simulation results showed deviations within 10-30 ms (relative deviation in the order of 5-10%) for the ABS and slightly more for the high viscosity PC in the range of 100-500 ms (relative deviation in the order of 20-30%) on timings between different sections during filling.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering
Contributors: Guerrier, P., Tosello, G., Hattel, J. H.
Pages: 12–20
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: C I R P - Journal of Manufacturing Science and Technology
Volume: 16
ISSN (Print): 1755-5817
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.78 SJR 1.377 SNIP 2.007
Web of Science (2017): Indexed yes
Original language: English
Keywords: Glass mold, High speed camera, Injection molding, Simulations
Embargo ended: 21/08/2018
DOIs: 10.1016/j.cirpj.2016.08.002
Source: Findit
Source ID: 2342046345
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review