Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

Research output: Contribution to journalConference articleResearchpeer-review

729 Downloads (Pure)


Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads.
Original languageEnglish
Article number082024
Book seriesJournal of Physics: Conference Series (Online)
Issue number8
Number of pages10
Publication statusPublished - 2016
EventThe Science of Making Torque from Wind 2016 - Technische Universität München (TUM), Munich, Germany
Duration: 5 Oct 20167 Oct 2016
Conference number: 6


ConferenceThe Science of Making Torque from Wind 2016
LocationTechnische Universität München (TUM)
Internet address

Bibliographical note

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Fingerprint Dive into the research topics of 'Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations'. Together they form a unique fingerprint.

Cite this