Abstract
Limitations on the wind speed at which blade installation can be performed bears important financial consequences. The installation cost of a wind farm could be significantly reduced by increasing the wind speed at which blade mounting operations can be carried out. This work characterizes the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a solid basis for future design of an upgraded single blade installation system able to operate at higher wind speeds.
Original language | English |
---|---|
Article number | 012073 |
Book series | Journal of Physics: Conference Series (Online) |
Volume | 524 |
Number of pages | 11 |
ISSN | 1742-6596 |
DOIs | |
Publication status | Published - 2014 |
Event | 5th International Conference on The Science of Making Torque from Wind 2014 - Technical University of Denmark, Copenhagen, Denmark Duration: 10 Jun 2014 → 20 Jun 2014 Conference number: 5 http://indico.conferences.dtu.dk/conferenceDisplay.py?confId=138 |
Conference
Conference | 5th International Conference on The Science of Making Torque from Wind 2014 |
---|---|
Number | 5 |
Location | Technical University of Denmark |
Country/Territory | Denmark |
City | Copenhagen |
Period | 10/06/2014 → 20/06/2014 |
Internet address |