First-order aerodynamic and aeroelastic behavior of a single-blade installation setup

Mac Gaunaa, Leonardo Bergami, Srinivas Guntur, Frederik Zahle

    Research output: Contribution to journalConference articleResearchpeer-review

    362 Downloads (Pure)

    Abstract

    Limitations on the wind speed at which blade installation can be performed bears important financial consequences. The installation cost of a wind farm could be significantly reduced by increasing the wind speed at which blade mounting operations can be carried out. This work characterizes the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a solid basis for future design of an upgraded single blade installation system able to operate at higher wind speeds.
    Original languageEnglish
    Article number012073
    Book seriesJournal of Physics: Conference Series (Online)
    Volume524
    Number of pages11
    ISSN1742-6596
    DOIs
    Publication statusPublished - 2014
    Event5th International Conference on The Science of Making Torque from Wind 2014 - Technical University of Denmark, Copenhagen, Denmark
    Duration: 10 Jun 201420 Jun 2014
    Conference number: 5
    http://indico.conferences.dtu.dk/conferenceDisplay.py?confId=138

    Conference

    Conference5th International Conference on The Science of Making Torque from Wind 2014
    Number5
    LocationTechnical University of Denmark
    Country/TerritoryDenmark
    CityCopenhagen
    Period10/06/201420/06/2014
    Internet address

    Bibliographical note

    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

    Fingerprint

    Dive into the research topics of 'First-order aerodynamic and aeroelastic behavior of a single-blade installation setup'. Together they form a unique fingerprint.

    Cite this