Finite element limit analysis of slabs including limitations on shear forces

The load carrying capacity of existing concrete slab bridges is often limited by the shear capacity and the redistribution of shear forces when subjected to concentrated loads. In the recent years, finite element limit analysis has shown to be an efficient method to determine the ultimate capacity of concrete slabs. The existing plate elements within this method applied to concrete slabs cannot handle limitations on moment and shear forces. In this paper, a lower bound linear element for limit analysis of concrete slabs is presented. The element can model shear forces and include limitations on the shear forces. Yield conditions for moment, shear and interaction are considered. It is shown that the element performs well compared to the linear Kirchhoff element, which cannot handle shear limitations. Finally, a model of an existing shear critical bridge is compared with a full-scale field test.

General information
Publication status: Published
Organisations: Department of Civil Engineering, Structures and Safety
Contributors: Jensen, T. W., Poulsen, P. N., Hoang, L. C.
Number of pages: 10
Pages: 896-905
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Engineering Structures
Volume: 174
ISSN (Print): 0141-0296
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 3.77 SJR 1.628 SNIP 2.089
Web of Science (2018): Impact factor 3.084
Web of Science (2018): Indexed yes
Original language: English
Keywords: Existing bridges, FELA, Limit analysis, Shear-moment interaction, Strength-assessment, Ultimate capacity
DOIs:
10.1016/j.engstruct.2018.07.007
Source: FindIt
Source-ID: 2437926431
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review