Finite element analysis of coupled nonlinear heat and moisture transfer in wood

A nonlinear model for analysing heat and moisture flow in wood during drying below the fiber saturation point is presented. The model used considers wood at a macro level without taking the various moisture transports mechanisms at the microscopic level into account. Based on the finite-element method, a coupled system of equations resulting from the adopted heat and moisture transfer equations is established and an iterative scheme is proposed. The numerical procedure is verified by a test example. In a two-dimensional analysis, the influence of the coupling on the combined heat and moisture transfer is studied for a board subjected to a typical kiln-drying condition. How well the results agree with those obtained by introducing a commonly applied simplification is discussed.

General information
Publication status: Published
Organisations: Linnaeus University, Chalmers University of Technology
Contributors: Eriksson, J., Ormarsson, S., Petersson, H.
Pages: 851-864
Publication date: 2006
Peer-reviewed: Yes

Publication information
Journal: Numerical Heat Transfer
Volume: 50
Issue number: 9
ISSN (Print): 1040-7782
Ratings:
Scopus rating (2006): SJR 1.44 SNIP 1.273
Web of Science (2006): Indexed yes
Original language: English
Source: orbit
Source ID: 208513
Research output: Contribution to journal › Journal article – Annual report year: 2006 › Research › peer-review