Abstract
The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a fieldinduced quantum phase transition, in superconducting Nd0.05Ce0.95CoIn5, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field mu H-0* = 8 T. For H > H*, a spin-density phase emerges and shares many properties with the Q phase in CeCoIn5. These results suggest that the magnetic instability is not magnetically driven, and we propose that it is driven by a modification of superconducting condensate at H*.
Original language | English |
---|---|
Article number | e1602055 |
Journal | Science Advances |
Volume | 3 |
Issue number | 5 |
Number of pages | 5 |
ISSN | 2375-2548 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
Copyright © 2017, The AuthorsThis is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.