Feruloylated and Nonferuloylated Arabino-oligosaccharides from Sugar Beet Pectin Selectively Stimulate the Growth of Bifidobacterium spp. in Human Fecal in Vitro Fermentations

Jesper Holck, Andrea Lorentzen, Louise Kristine Vigsnæs, Tine Rask Licht, Jørn Dalgaard Mikkelsen, Anne S. Meyer

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The side chains of the rhamnogalacturonan I fraction in sugar beet pectin are particularly rich in arabinan moieties, which may be substituted with feruloyl groups. In this work the arabinan-rich fraction resulting from sugar beet pulp based pectin production was separated by Amberlite XAD hydrophobic interaction and membrane separation into four fractions based on feruloyl substitution and arabino-oligosaccharide chain length: short-chain (DP 2–10) and long-chain (DP 7–14) feruloylated and nonferuloylated arabino-oligosaccharides, respectively. HPAEC, SEC, and MALDI-TOF/TOF analyses of the fractions confirmed the presence of singly and doubly substituted feruloylated arabino-oligosaccharides in the feruloyl-substituted fractions. In vitro microbial fermentation by human fecal samples (n = 6 healthy human volunteers) showed a selective stimulation of bifidobacteria by both the feruloylated and the nonferuloylated long-chain arabino-oligosaccharides to the same extent as the prebiotic fructo-oligosaccharides control. None of the fractions stimulated the growth of the potential pathogen Clostridium difficile in monocultures. This work provides a first report on the separation of potentially bioactive feruloylated arabino-oligosaccharides from sugar beet pulp and an initial indication of the potentially larger bifidogenic effect of relatively long-chain arabino-oligosaccharides as opposed to short-chain arabino-oligosaccharides.
Original languageEnglish
JournalJournal of Agricultural and Food Chemistry
Volume59
Issue number12
Pages (from-to)6511–6519
ISSN0021-8561
DOIs
Publication statusPublished - 2011

Keywords

  • Feruloyl substitution
  • Hydrophilic interaction chromatography
  • Clostridium difficile
  • Prebiotics
  • Arabino-oligosaccharides

Fingerprint

Dive into the research topics of 'Feruloylated and Nonferuloylated Arabino-oligosaccharides from Sugar Beet Pectin Selectively Stimulate the Growth of Bifidobacterium spp. in Human Fecal in Vitro Fermentations'. Together they form a unique fingerprint.

Cite this