Feasibility study of 5MW superconducting wind turbine generator

The feasibility of installing a direct drive superconducting generator in the 5MW reference offshore wind turbine of the National Renewable Energy Laboratory (NREL) has been examined. The engineering current densities J_e obtained in a series of race track coils have been combined with magnetization measurements to estimate the properties of suitable field coils for a synchronous generator, which is more lightweight than the conventional used combination of a gear box and a fast rotating generator. An analytical model and finite element simulations have been used to estimate the active mass of generators with varying number of poles. A 24 pole machine with an outer diameter of 4.2m and active length and mass of 1.2m and 34 tons is suggested possible, if a $J_e=300A/mm^2$ can be obtained in B=4T pointing to an operation temperature around 40K.

General information
Publication status: Published
Organisations: Nano-Microstructures in Materials, Materials Research Division, Risø National Laboratory for Sustainable Energy, Electric Components, Department of Electrical Engineering, Dynamical systems, Department of Mathematics, Electric Energy Systems, Slovak Academy of Sciences
Pages: 1464-1469
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Physica C: Superconductivity and its applications
Volume: 471
Issue number: 21-22
ISSN (Print): 0921-4534
Ratings:
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.94 SJR 0.694 SNIP 0.606
Web of Science (2011): Impact factor 1.014
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Original language: English
Keywords: Superconducting generator, Offshore wind turbine, Race track coils
DOIs: 10.1016/j.physc.2011.05.217
Source: orbit
Source ID: 285838
Research output: Contribution to journal › Journal article – Annual report year: 2011 › Research › peer-review