Feasibility of functional MRI at ultralow magnetic field via changes in cerebral blood volume
- DTU Orbit (07/11/2019)

Feasibility of functional MRI at ultralow magnetic field via changes in cerebral blood volume

We investigate the feasibility of performing functional MRI (fMRI) at ultralow field (ULF) with a Superconducting QUantum Interference Device (SQUID), as used for detecting magnetoencephalography (MEG) signals from the human head. While there is negligible magnetic susceptibility variation to produce blood oxygenation level-dependent (BOLD) contrast at ULF, changes in cerebral blood volume (CBV) may be a sensitive mechanism for fMRI given the five-fold spread in spin-lattice relaxation time (T1) values across the constituents of the human brain. We undertook simulations of functional signal strength for a simplified brain model involving activation of a primary cortical region in a manner consistent with a blocked task experiment. Our simulations involve measured values of T1 at ULF and experimental parameters for the performance of an upgraded ULFMRI scanner. Under ideal experimental conditions we predict a functional signal-to-noise ratio of between 3.1 and 7.1 for an imaging time of 30min, or between 1.5 and 3.5 for a blocked task experiment lasting 7.5min. Our simulations suggest it may be feasible to perform fMRI using a ULFMRI system designed to perform MRI and MEG in situ.

General information
Publication status: Published
Organisations: Neutrons and X-rays for Materials Physics, Department of Physics, University of California at Berkeley, Max Planck Institute for Biological Cybernetics
Corresponding author: Inglis, B.
Contributors: Buckenmaier, K., Pedersen, A., SanGiorgio, P., Scheffler, K., Clarke, J., Inglis, B.
Number of pages: 7
Pages: 185-191
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: NeuroImage
Volume: 186
ISSN (Print): 1053-8119
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
Original language: English
Keywords: Cerebral blood volume, SQUID, Ultra-low field, fMRI
Electronic versions:
Postprint. Embargo ended: 28/10/2019
DOIs: 10.1016/j.neuroimage.2018.10.071
Source: FindIt
Source ID: 2441010739
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review