Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography

Kristine Munk Jespersen, Jens Zangenberg Hansen, Tristan Lowe, Philip J. Withers, Lars Pilgaard Mikkelsen

    Research output: Contribution to journalJournal articleResearchpeer-review

    525 Downloads (Pure)

    Abstract

    In this study, the progression of tension-tension fatigue (R=0.1) damage in a unidirectional (UD) composite made from a non-crimp glass fibre fabric used for wind turbine blades is investigated using multi-scale 3D X-ray computed tomography (CT). Initially, a representative volume is examined at one specific damage level. UD fibre fractures are only observed close to the supporting thin transverse backing layers. Furthermore, UD fibre fractures are only observed at locations where backing fibre bundles intersect one another and are at the same time locally close to a UD bundle. In addition, to study the progression of damage as a function of stiffness degradation at higher resolution four samples are subjected to different numbers of cycles before examination by CT. One sample is examined during the initial stiffness drop, two samples during stable stiffness degradation, and one close to final failure. Damage is observed to occur as chains of individual fibre breaks or clusters of fibre fractures rather than large fracture planes. Our work indicates how fracture of UD fibres initiates from intersecting ±80◦ backing bundles extending progressively further into the UD layer. The fibre fracture zone becomes more diffuse further from the backing layer. Our work supports a scheme explaining stiffness degradation in terms of UD fibre damage accumulation and demonstrates the importance of 3D and ideally time-lapse imaging studies.

    Original languageEnglish
    JournalComposites Science and Technology
    Volume136
    Pages (from-to)94–103
    ISSN0266-3538
    DOIs
    Publication statusPublished - 2016

    Bibliographical note

    CC BY-NC-ND 3.0

    Keywords

    • Polymer Matrix Composites (PMCs)
    • Glass fibres
    • Fracture
    • Non-destructive testing
    • Micro-tomography

    Fingerprint

    Dive into the research topics of 'Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography'. Together they form a unique fingerprint.

    Cite this