Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming - DTU Orbit (23/08/2019)

Several techniques can estimate the 2-D velocity vector in ultrasound. Directional beamforming (DB) estimates blood flow velocities with a higher precision and accuracy than transverse oscillation (TO), but at the cost of a high beamforming load when estimating the flow angle. In this paper, it is proposed to use TO to estimate an initial flow angle, which is then refined in a DB step. Velocity magnitude is estimated along the flow direction using cross-correlation. It is shown that the suggested TO-DB method can improve the performance of velocity estimates compared to TO, and with a beamforming load, which is 4.6 times larger than for TO and seven times smaller than for conventional DB. Steered plane wave transmissions are employed for high frame rate imaging, and parabolic flow with a peak velocity of 0.5 m/s is simulated in straight vessels at beamto-flow angles from 45 to 90. The TO-DB method estimates the angle with a bias and standard deviation (SD) less than 2, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2 to 17 and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger but within 4% for TO-DB. The same trends are observed in measurements although with a slightly larger bias. Simulations of realistic flow in a carotid bifurcation model provide visualization of complex flow, and the spread of velocity magnitude estimates is 7.1 cm/s for TO-DB, while it is 11.8 cm/s using only TO. However, velocities for TO-DB are underestimated at peak systole as indicated by a regression value of 0.97 for TO and 0.85 for TO-DB. An in vivo scanning of the carotid bifurcation is used for vector velocity estimations using TO and TO-DB. The SD of the velocity profile over a cardiac cycle is 4.2% for TO and 3.2% for TO-DB.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, MEMS-AppliedSensors, Department of Electrical Engineering, Biomedical Engineering, Department of Information Technology, Center for Fast Ultrasound Imaging, Copenhagen University Hospital
Pages: 1050 - 1062
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Volume: 64
Issue number: 7
ISSN (Print): 0885-3010
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.94 SJR 1.183 SNIP 1.388
Web of Science (2017): Impact factor 2.704
Web of Science (2017): Indexed yes
Original language: English
Keywords: Blood flow, Medical ultrasound, Plane wave imaging, Vector flow imaging
Electronic versions:
TUFFC2693403.pdf
DOIs:
10.1109/TUFFC.2017.2693403
Source: FindIt
Source-ID: 2356876123
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review