Fast inscription of long period gratings in microstructured polymer optical fibers

Fast inscription of long period gratings in microstructured polymer optical fibers

We demonstrate 20 dB long period grating (LPG) fast inscription in microstructured polymer optical fibers (mPOFs) using a point-by-point technique obtaining an LPG total length of 25 mm. Two 248 nm UV laser pulses of 15 ns duration have been employed for every inscription point, which means a time reduction by over 21 times compared with the fastest inscription time already reported in literature. The device has been fabricated in a single-mode mPOF with a core that has been doped with benzyl dimethyl ketal for photosensitivity enhancement. Moreover, we characterize the strain and temperature responses and the stability of the fabricated gratings response under different conditions in order to assess the viability for different applications.

General information
Publication status: Published
Organisations: Department of Photonics Engineering, Fiber Sensors & Supercontinuum, Polytechnic University of Valencia, University of Aveiro
Corresponding author: Min, R.
Contributors: Min, R., Marques, C., Nielsen, K., Bang, O., Ortega, B.
Pages: 1919-1923
Publication date: 1 Mar 2018
Peer-reviewed: Yes

Publication information
Journal: IEEE Sensors Journal
Volume: 18
Issue number: 5
ISSN (Print): 1530-437X
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 3.96 SJR 0.726 SNIP 1.709
Web of Science (2018): Indexed yes
Original language: English
Keywords: fiber Bragg gratings, optical fiber devices, optical filters, Polymer optical fibers
DOIs:
10.1109/JSEN.2018.2791663
Source: Scopus
Source ID: 85041224836
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review