Fast Erasure-and error decoding of algebraic geometry codes up to the Feng-Rao bound

Tom Høholdt, Helge Elbrønd Jensen, Shojiro Sakata, Doug Leonard

    Research output: Contribution to journalConference articleResearchpeer-review

    Abstract

    This correspondence gives an errata (that is erasure-and error-) decoding algorithm of one-point algebraic-geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-Massey algorithm and the voting procedure of Feng and Rao.
    Original languageEnglish
    JournalI E E E Transactions on Information Theory
    Volume44
    Issue number4
    Pages (from-to)1558-1564
    ISSN0018-9448
    DOIs
    Publication statusPublished - 1998
    EventIEEE Internatonal Symposium on Information Theory - Ulm, Germany
    Duration: 27 Jun 19974 Jul 1997

    Conference

    ConferenceIEEE Internatonal Symposium on Information Theory
    Country/TerritoryGermany
    CityUlm
    Period27/06/199704/07/1997

    Keywords

    • algebraic-geometry codes
    • erasure and error decoding
    • Sakata's algorithm

    Fingerprint

    Dive into the research topics of 'Fast Erasure-and error decoding of algebraic geometry codes up to the Feng-Rao bound'. Together they form a unique fingerprint.

    Cite this