Abstract
This work introduces a decentralized mechanism for the fair and efficient allocation of limited community-central renewable energy sources (RESs) among consumers with diverse energy demand and risk attitude levels in an energy community. In the proposed non-cooperative game, the self-interested community members independently decide whether to compete or not for access to RESs during peak hours and shift their loads analogously. In the peak hours, a proportional allocation (PA) policy is used to allocate the limited RESs among the competitors. Conditions for the existence of a Nash equilibrium (NE) or dominant strategies in this non-cooperative game are derived, and closed-form expressions of the renewable energy demand and social cost are calculated. Moreover, a decentralized algorithm for choosing consumers’ strategies that lie on NE states is designed. The work shows that the risk attitude of the consumers can have a significant impact on the deviation of the induced social cost from the optimal cost as the latter derives by a centralized minimization with full access to all consumers information. Besides, the proposed decentralized mechanism with the PA policy is shown to attain a much lower social cost than one using the naive equal sharing policy.
Original language | English |
---|---|
Journal | IEEE Access |
Volume | 12 |
Pages (from-to) | 134198-134214 |
ISSN | 2169-3536 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- Energy communities
- Renewable energy sources
- Non-cooperative game theory
- Risk
- Demand side management