Fabrication and Electrochemical Performance of Zn-Doped La0.2Sr0.25Ca0.45TiO3 Infiltrated with Nickel-CGO, Iron, and Cobalt as an Alternative Anode Material for Solid Oxide Fuel Cells

Nazan Muzaffar, Nasima Arshad, Daniel Bøgh Drasbæk, Bhaskar Reddy Sudireddy, Peter Holtappels*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

116 Downloads (Pure)

Abstract

In solid oxide fuel cells, doped strontium titinates have been widely studied as anode materials due to their high n-type conductivity. They are used as current conducting backbones as an alternative to nickel-cermets, which suffer degradation due to coking, sulphur poisoning, and low tolerance to redox cycling. In this work, anode backbone materials were synthesized from La0.2Sr0.25Ca0.45TiO3-δ (LSCTA-), modified with 5 wt.% Zn, and infiltrated with nickel (Ni)/ceria gadolinium-doped cerium oxide (CGO), Fe, and Co. The electrodes were further studied for their electrochemical performance using electrochemical impedance spectroscopy (EIS) at open circuit voltage (OCV) in different hydrogen to steam ratios and at various operating temperatures (850-650 °C). Infiltration of electrocatalysts significantly reduced the polarization resistance and among the studied infiltrates, at all operating temperatures, Ni-CGO showed excellent electrode performance. The polarization resistances in 3% and 50% H2O/H2 atmosphere were found to be 0.072 and 0.025 Ω cm2, respectively, at 850 °C, and 0.091 and 0.076 Ω cm2, respectively, at 750 °C, with Ni-CGO. These values are approximately three orders of magnitude smaller than the polarization resistance (25 Ω cm2) of back bone material measured at 750 °C.

Original languageEnglish
Article number269
JournalCatalysts
Volume9
Issue number3
Number of pages11
ISSN2073-4344
DOIs
Publication statusPublished - 2019

Keywords

  • Perovskites
  • Infiltration
  • Electrochemical impedance
  • Titinates
  • Open circuit voltage

Cite this

@article{dd5b6ec12c974018b175185add33ed24,
title = "Fabrication and Electrochemical Performance of Zn-Doped La0.2Sr0.25Ca0.45TiO3 Infiltrated with Nickel-CGO, Iron, and Cobalt as an Alternative Anode Material for Solid Oxide Fuel Cells",
abstract = "In solid oxide fuel cells, doped strontium titinates have been widely studied as anode materials due to their high n-type conductivity. They are used as current conducting backbones as an alternative to nickel-cermets, which suffer degradation due to coking, sulphur poisoning, and low tolerance to redox cycling. In this work, anode backbone materials were synthesized from La0.2Sr0.25Ca0.45TiO3-δ (LSCTA-), modified with 5 wt.{\%} Zn, and infiltrated with nickel (Ni)/ceria gadolinium-doped cerium oxide (CGO), Fe, and Co. The electrodes were further studied for their electrochemical performance using electrochemical impedance spectroscopy (EIS) at open circuit voltage (OCV) in different hydrogen to steam ratios and at various operating temperatures (850-650 °C). Infiltration of electrocatalysts significantly reduced the polarization resistance and among the studied infiltrates, at all operating temperatures, Ni-CGO showed excellent electrode performance. The polarization resistances in 3{\%} and 50{\%} H2O/H2 atmosphere were found to be 0.072 and 0.025 Ω cm2, respectively, at 850 °C, and 0.091 and 0.076 Ω cm2, respectively, at 750 °C, with Ni-CGO. These values are approximately three orders of magnitude smaller than the polarization resistance (25 Ω cm2) of back bone material measured at 750 °C.",
keywords = "Perovskites, Infiltration, Electrochemical impedance, Titinates, Open circuit voltage",
author = "Nazan Muzaffar and Nasima Arshad and Drasb{\ae}k, {Daniel B{\o}gh} and Sudireddy, {Bhaskar Reddy} and Peter Holtappels",
year = "2019",
doi = "10.3390/catal9030269",
language = "English",
volume = "9",
journal = "Catalysts",
issn = "2073-4344",
publisher = "M D P I AG",
number = "3",

}

TY - JOUR

T1 - Fabrication and Electrochemical Performance of Zn-Doped La0.2Sr0.25Ca0.45TiO3 Infiltrated with Nickel-CGO, Iron, and Cobalt as an Alternative Anode Material for Solid Oxide Fuel Cells

AU - Muzaffar, Nazan

AU - Arshad, Nasima

AU - Drasbæk, Daniel Bøgh

AU - Sudireddy, Bhaskar Reddy

AU - Holtappels, Peter

PY - 2019

Y1 - 2019

N2 - In solid oxide fuel cells, doped strontium titinates have been widely studied as anode materials due to their high n-type conductivity. They are used as current conducting backbones as an alternative to nickel-cermets, which suffer degradation due to coking, sulphur poisoning, and low tolerance to redox cycling. In this work, anode backbone materials were synthesized from La0.2Sr0.25Ca0.45TiO3-δ (LSCTA-), modified with 5 wt.% Zn, and infiltrated with nickel (Ni)/ceria gadolinium-doped cerium oxide (CGO), Fe, and Co. The electrodes were further studied for their electrochemical performance using electrochemical impedance spectroscopy (EIS) at open circuit voltage (OCV) in different hydrogen to steam ratios and at various operating temperatures (850-650 °C). Infiltration of electrocatalysts significantly reduced the polarization resistance and among the studied infiltrates, at all operating temperatures, Ni-CGO showed excellent electrode performance. The polarization resistances in 3% and 50% H2O/H2 atmosphere were found to be 0.072 and 0.025 Ω cm2, respectively, at 850 °C, and 0.091 and 0.076 Ω cm2, respectively, at 750 °C, with Ni-CGO. These values are approximately three orders of magnitude smaller than the polarization resistance (25 Ω cm2) of back bone material measured at 750 °C.

AB - In solid oxide fuel cells, doped strontium titinates have been widely studied as anode materials due to their high n-type conductivity. They are used as current conducting backbones as an alternative to nickel-cermets, which suffer degradation due to coking, sulphur poisoning, and low tolerance to redox cycling. In this work, anode backbone materials were synthesized from La0.2Sr0.25Ca0.45TiO3-δ (LSCTA-), modified with 5 wt.% Zn, and infiltrated with nickel (Ni)/ceria gadolinium-doped cerium oxide (CGO), Fe, and Co. The electrodes were further studied for their electrochemical performance using electrochemical impedance spectroscopy (EIS) at open circuit voltage (OCV) in different hydrogen to steam ratios and at various operating temperatures (850-650 °C). Infiltration of electrocatalysts significantly reduced the polarization resistance and among the studied infiltrates, at all operating temperatures, Ni-CGO showed excellent electrode performance. The polarization resistances in 3% and 50% H2O/H2 atmosphere were found to be 0.072 and 0.025 Ω cm2, respectively, at 850 °C, and 0.091 and 0.076 Ω cm2, respectively, at 750 °C, with Ni-CGO. These values are approximately three orders of magnitude smaller than the polarization resistance (25 Ω cm2) of back bone material measured at 750 °C.

KW - Perovskites

KW - Infiltration

KW - Electrochemical impedance

KW - Titinates

KW - Open circuit voltage

U2 - 10.3390/catal9030269

DO - 10.3390/catal9030269

M3 - Journal article

VL - 9

JO - Catalysts

JF - Catalysts

SN - 2073-4344

IS - 3

M1 - 269

ER -