We present measurements of the \(\beta \)-factor, describing the coupling efficiency of light emitted by single InAs/GaAs semiconductor quantum dots into a photonic crystal waveguide mode. The \(\beta \)-factor is evaluated by means of time resolved frequency-dependent photoluminescence spectroscopy. The emission wavelength of single quantum dots is temperature tuned across the band edge of a photonic crystal waveguide and the spontaneous emission rate is recorded. Decay rates up to 5.7 ns\(^{-1} \), corresponding to a Purcell factor of 5.2, are measured and \(\beta \)-factors up to 85% are extracted. These results prove the potential of photonic crystal waveguides in the realization of on-chip single-photon sources.

General information
Publication status: Published
Organisations: Quantum Photonics, Department of Photonics Engineering
Contributors: Nielsen, H. T., Sapienza, L., Lodahl, P.
Pages: 231106
Publication date: 2010
Peer-reviewed: Yes

Publication information
Volume: 96
Issue number: 23
ISSN (Print): 0003-6951
Ratings:
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.92 SNIP 1.789
Web of Science (2010): Impact factor 3.841

Keywords: energy gap, III-V semiconductors, gallium arsenide, semiconductor quantum dots, photoluminescence, photonic crystals, indium compounds, time resolved spectra

Electronic versions:
DOI: 10.1063/1.3446873
URLs:
http://link.aip.org/link/APPLAB/v96/i23/p231106/s1

Bibliographical note
Copyright (2010) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Source: orbit
Source ID: 263634
Research output: Contribution to journal › Journal article – Annual report year: 2010 › Research › peer-review