Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces - DTU Orbit (02/11/2019)

Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO₂. Extracellular electron-transfer mechanisms involved in the acquisition of electrons from metals by electrical microbially influenced corrosion (EMIC), from other living cells by interspecies electron transfer (IET), or from an electrode during MES rely on: (i) mediators such as H₂; (ii) physical contact through electron-transfer proteins; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, Bioelectrochemical Systems, Microbial Electro synthesis, Cornell University
Contributors: Tremblay, P., Angenent, L. T., Zhang, T.
Pages: 360-371
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Trends in Biotechnology
Volume: 35
Issue number: 4
ISSN (Print): 0167-7799
Ratings:
 BFI (2017): BFI-level 2
 Scopus rating (2017): CiteScore 9.69 SJR 3.524 SNIP 2.697
 Web of Science (2017): Impact factor 13.578
 Web of Science (2017): Indexed yes
Original language: English
DOIs:
 10.1016/j.tibtech.2016.10.004
Source: FindIt
Source ID: 2348622695
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review