Extending the zero-derivative principle for slow–fast dynamical systems

Slow–fast systems often possess slow manifolds, that is invariant or locally invariant sub-manifolds on which the dynamics evolves on the slow time scale. For systems with explicit timescale separation, the existence of slow manifolds is due to Fenichel theory, and asymptotic expansions of such manifolds are easily obtained. In this paper, we discuss methods of approximating slow manifolds using the so-called zero-derivative principle. We demonstrate several test functions that work for systems with explicit timescale separation including ones that can be generalized to systems without explicit timescale separation. We also discuss the possible spurious solutions, known as ghosts, as well as treat the Templator system as an example.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics, Universite de La Rochelle, Inria Paris-Rocquencourt Research Centre, INRIA Sophia Antipolis
Contributors: Benoît, E., Brøns, M., Desroches, M., Krupa, M.
Pages: 2255-2270
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Zeitschrift fuer Angewandte Mathematik und Physik
Volume: 66
Issue number: 5
ISSN (Print): 0044-2275
Ratings:
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.07 SJR 0.955 SNIP 1.262
Web of Science (2015): Impact factor 1.56
Web of Science (2015): Indexed yes
Original language: English
Keywords: Slow–fast dynamics, Zero-derivative principle, Slow manifolds, Fenichel theory, Curvature, Intrinsic low-dimensional manifolds, Ghosts, Templator

Electronic versions:
postprint.pdf
DOIs:
10.1007/s00033-015-0552-8
Source: FindIt
Source ID: 2279692051
Research output: Contribution to journal → Journal article – Annual report year: 2015 → Research → peer-review